MobVis:移动轨迹分析和可视化的框架

Lucas N. Silva, Paulo H. L. Rettore, Vinícius F. S. Mota, B. P. Santos
{"title":"MobVis:移动轨迹分析和可视化的框架","authors":"Lucas N. Silva, Paulo H. L. Rettore, Vinícius F. S. Mota, B. P. Santos","doi":"10.1109/ISCC55528.2022.9912988","DOIUrl":null,"url":null,"abstract":"Due to the increasing location-aware devices, mobility traces datasets have become an essential source for smart cities planning. Given this scenario, we propose MobVis, a framework to characterize mobility traces through different metrics, allowing comparisons between different mobility traces in a simplified way. Furthermore, MobVis can extract and visualize spatial, temporal, and social aspects of mobility data through a Web interface. MobVis architecture has five main components: input data; data preparation; data processing and analysis to extract mobility metrics; visualization; and a web interface. To demonstrate the framework's process, we created a use case analyzing the characteristics of two distinct traces (Taxi and IoT-Objects). Then, through different metrics, we evaluated the data in two aspects: i) descriptive, through a set of graphics and quantitative data that enables characterizing each trace; and ii) comparative, presenting the main differences between the traces.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MobVis: A Framework for Analysis and Visualization of Mobility Traces\",\"authors\":\"Lucas N. Silva, Paulo H. L. Rettore, Vinícius F. S. Mota, B. P. Santos\",\"doi\":\"10.1109/ISCC55528.2022.9912988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing location-aware devices, mobility traces datasets have become an essential source for smart cities planning. Given this scenario, we propose MobVis, a framework to characterize mobility traces through different metrics, allowing comparisons between different mobility traces in a simplified way. Furthermore, MobVis can extract and visualize spatial, temporal, and social aspects of mobility data through a Web interface. MobVis architecture has five main components: input data; data preparation; data processing and analysis to extract mobility metrics; visualization; and a web interface. To demonstrate the framework's process, we created a use case analyzing the characteristics of two distinct traces (Taxi and IoT-Objects). Then, through different metrics, we evaluated the data in two aspects: i) descriptive, through a set of graphics and quantitative data that enables characterizing each trace; and ii) comparative, presenting the main differences between the traces.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于位置感知设备的增加,移动轨迹数据集已成为智能城市规划的重要来源。鉴于这种情况,我们提出了MobVis,这是一个通过不同指标来描述移动轨迹的框架,允许以简化的方式比较不同的移动轨迹。此外,MobVis可以通过Web界面提取和可视化移动数据的空间、时间和社会方面。MobVis架构有五个主要组成部分:输入数据;数据准备;数据处理和分析,提取流动性指标;可视化;还有一个网络界面。为了演示框架的过程,我们创建了一个用例,分析两个不同轨迹(出租车和物联网对象)的特征。然后,通过不同的度量,我们从两个方面评估数据:i)描述性的,通过一组图形和定量数据来表征每个痕迹;ii)比较,呈现轨迹之间的主要差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MobVis: A Framework for Analysis and Visualization of Mobility Traces
Due to the increasing location-aware devices, mobility traces datasets have become an essential source for smart cities planning. Given this scenario, we propose MobVis, a framework to characterize mobility traces through different metrics, allowing comparisons between different mobility traces in a simplified way. Furthermore, MobVis can extract and visualize spatial, temporal, and social aspects of mobility data through a Web interface. MobVis architecture has five main components: input data; data preparation; data processing and analysis to extract mobility metrics; visualization; and a web interface. To demonstrate the framework's process, we created a use case analyzing the characteristics of two distinct traces (Taxi and IoT-Objects). Then, through different metrics, we evaluated the data in two aspects: i) descriptive, through a set of graphics and quantitative data that enables characterizing each trace; and ii) comparative, presenting the main differences between the traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信