cas - ai:系统文献综述中半自动化初始选择任务的策略

Fábio Octaviano, K. Felizardo, S. Fabbri, B. Napoleão, Fábio Petrillo, Sylvain Hallé
{"title":"cas - ai:系统文献综述中半自动化初始选择任务的策略","authors":"Fábio Octaviano, K. Felizardo, S. Fabbri, B. Napoleão, Fábio Petrillo, Sylvain Hallé","doi":"10.1109/SEAA56994.2022.00080","DOIUrl":null,"url":null,"abstract":"Context: There are several initiatives to semi-automate the initial selection of studies task for Systematic Literature Reviews (SLR) to reduce effort and potential bias. Objective: We propose a strategy called SCAS-AI to semi-automate the initial selection task. This strategy improves the original SCAS strategy with Artificial Intelligence (AI) resources (fuzzy logic and genetic algorithm) for studies selection. Method: We evaluated the SCAS-AI strategy through a quasi-experiment with SLRs in Software Engineering (SE). Results: In general, the SCAS-AI strategy improved the results achieved using the original SCAS strategy in reducing the effort of the initial selection task. The effort reduction applying SCAS-AI was 39.1%. In addition, the errors percentage was 0.3% for studies automatically excluded (false negative – loss of evidence) and 3.3% for studies automatically included (false positive – evidence later excluded during the full-text reading). Conclusion: The results show the potential of the investigated AI techniques to support the initial selection task for SLRs in SE.","PeriodicalId":269970,"journal":{"name":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCAS-AI: A Strategy to Semi-Automate the Initial Selection Task in Systematic Literature Reviews\",\"authors\":\"Fábio Octaviano, K. Felizardo, S. Fabbri, B. Napoleão, Fábio Petrillo, Sylvain Hallé\",\"doi\":\"10.1109/SEAA56994.2022.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: There are several initiatives to semi-automate the initial selection of studies task for Systematic Literature Reviews (SLR) to reduce effort and potential bias. Objective: We propose a strategy called SCAS-AI to semi-automate the initial selection task. This strategy improves the original SCAS strategy with Artificial Intelligence (AI) resources (fuzzy logic and genetic algorithm) for studies selection. Method: We evaluated the SCAS-AI strategy through a quasi-experiment with SLRs in Software Engineering (SE). Results: In general, the SCAS-AI strategy improved the results achieved using the original SCAS strategy in reducing the effort of the initial selection task. The effort reduction applying SCAS-AI was 39.1%. In addition, the errors percentage was 0.3% for studies automatically excluded (false negative – loss of evidence) and 3.3% for studies automatically included (false positive – evidence later excluded during the full-text reading). Conclusion: The results show the potential of the investigated AI techniques to support the initial selection task for SLRs in SE.\",\"PeriodicalId\":269970,\"journal\":{\"name\":\"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA56994.2022.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA56994.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:系统文献综述(SLR)的研究任务的初始选择有几个半自动化的举措,以减少工作量和潜在的偏差。目的:我们提出了一种称为SCAS-AI的策略来半自动化初始选择任务。该策略利用人工智能(AI)资源(模糊逻辑和遗传算法)对原有的SCAS策略进行改进。方法:我们通过软件工程(SE)中slr的准实验来评估sca - ai策略。结果:总体而言,SCAS- ai策略在减少初始选择任务的工作量方面改善了使用原始SCAS策略所取得的结果。应用sca - ai的工作量减少了39.1%。此外,自动排除的研究(假阴性-证据丢失)的错误率为0.3%,自动纳入的研究(假阳性-后来在全文阅读过程中排除的证据)的错误率为3.3%。结论:研究结果表明,所研究的人工智能技术具有支持SE单反初始选择任务的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCAS-AI: A Strategy to Semi-Automate the Initial Selection Task in Systematic Literature Reviews
Context: There are several initiatives to semi-automate the initial selection of studies task for Systematic Literature Reviews (SLR) to reduce effort and potential bias. Objective: We propose a strategy called SCAS-AI to semi-automate the initial selection task. This strategy improves the original SCAS strategy with Artificial Intelligence (AI) resources (fuzzy logic and genetic algorithm) for studies selection. Method: We evaluated the SCAS-AI strategy through a quasi-experiment with SLRs in Software Engineering (SE). Results: In general, the SCAS-AI strategy improved the results achieved using the original SCAS strategy in reducing the effort of the initial selection task. The effort reduction applying SCAS-AI was 39.1%. In addition, the errors percentage was 0.3% for studies automatically excluded (false negative – loss of evidence) and 3.3% for studies automatically included (false positive – evidence later excluded during the full-text reading). Conclusion: The results show the potential of the investigated AI techniques to support the initial selection task for SLRs in SE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信