{"title":"用单个视觉转换器联合学习图像和视频","authors":"Shuki Shimizu, Toru Tamaki","doi":"10.23919/MVA57639.2023.10215661","DOIUrl":null,"url":null,"abstract":"In this study, we propose a method for jointly learning of images and videos using a single model. In general, images and videos are often trained by separate models. We propose in this paper a method that takes a batch of images as input to Vision Transformer (IV-ViT), and also a set of video frames with temporal aggregation by late fusion. Experimental results on two image datasets and two action recognition datasets are presented.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint learning of images and videos with a single Vision Transformer\",\"authors\":\"Shuki Shimizu, Toru Tamaki\",\"doi\":\"10.23919/MVA57639.2023.10215661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a method for jointly learning of images and videos using a single model. In general, images and videos are often trained by separate models. We propose in this paper a method that takes a batch of images as input to Vision Transformer (IV-ViT), and also a set of video frames with temporal aggregation by late fusion. Experimental results on two image datasets and two action recognition datasets are presented.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint learning of images and videos with a single Vision Transformer
In this study, we propose a method for jointly learning of images and videos using a single model. In general, images and videos are often trained by separate models. We propose in this paper a method that takes a batch of images as input to Vision Transformer (IV-ViT), and also a set of video frames with temporal aggregation by late fusion. Experimental results on two image datasets and two action recognition datasets are presented.