广域网格资源的局部保持聚类与发现

Haiying Shen, K. Hwang
{"title":"广域网格资源的局部保持聚类与发现","authors":"Haiying Shen, K. Hwang","doi":"10.1109/ICDCS.2009.38","DOIUrl":null,"url":null,"abstract":"In large-scale computational or P2P Grids, discovery of heterogeneous resources as a working group is crucial to achieving scalable performance. This paper presents a hierarchical cycloid overlay (HCO) architecture with resource clustering and discovery algorithms for efficient and robust resource discovery in wide-area distributed Grid systems. We establish program/data locality by clustering resources based on their physical proximity and functional matching with user applications. We further develop randomized probing and cluster-token forwarding algorithms. The novelty of the HCO scheme lies in low overhead, fast speed and dynamism resilience in multi-resource discovery. The paper presents the HCO framework, new performance metrics, and simulation experimental results. This HCO scheme compares favorably with other resource management methods in static and dynamic Grid applications. In particular, it supports efficient resource clustering, reduces communications cost, and enhances resource discovery success rate in promoting large-scale distributed supercomputing applications.","PeriodicalId":387968,"journal":{"name":"2009 29th IEEE International Conference on Distributed Computing Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Locality-Preserving Clustering and Discovery of Wide-Area Grid Resources\",\"authors\":\"Haiying Shen, K. Hwang\",\"doi\":\"10.1109/ICDCS.2009.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large-scale computational or P2P Grids, discovery of heterogeneous resources as a working group is crucial to achieving scalable performance. This paper presents a hierarchical cycloid overlay (HCO) architecture with resource clustering and discovery algorithms for efficient and robust resource discovery in wide-area distributed Grid systems. We establish program/data locality by clustering resources based on their physical proximity and functional matching with user applications. We further develop randomized probing and cluster-token forwarding algorithms. The novelty of the HCO scheme lies in low overhead, fast speed and dynamism resilience in multi-resource discovery. The paper presents the HCO framework, new performance metrics, and simulation experimental results. This HCO scheme compares favorably with other resource management methods in static and dynamic Grid applications. In particular, it supports efficient resource clustering, reduces communications cost, and enhances resource discovery success rate in promoting large-scale distributed supercomputing applications.\",\"PeriodicalId\":387968,\"journal\":{\"name\":\"2009 29th IEEE International Conference on Distributed Computing Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 29th IEEE International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2009.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 29th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2009.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在大规模计算网格或P2P网格中,异构资源的发现是实现可扩展性能的关键。针对广域分布式网格系统中高效、鲁棒的资源发现问题,提出了一种具有资源聚类和发现算法的分层摆线叠加(HCO)体系结构。我们基于资源的物理接近性和与用户应用程序的功能匹配,通过聚类资源建立程序/数据的局部性。我们进一步开发了随机探测和集群令牌转发算法。HCO方案在多资源发现方面具有开销小、速度快和动态弹性等特点。本文介绍了HCO的框架、新的性能指标和仿真实验结果。在静态和动态网格应用中,这种HCO方案与其他资源管理方法相比具有优势。特别是支持高效的资源集群,降低通信成本,提高资源发现成功率,促进大规模分布式超级计算应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locality-Preserving Clustering and Discovery of Wide-Area Grid Resources
In large-scale computational or P2P Grids, discovery of heterogeneous resources as a working group is crucial to achieving scalable performance. This paper presents a hierarchical cycloid overlay (HCO) architecture with resource clustering and discovery algorithms for efficient and robust resource discovery in wide-area distributed Grid systems. We establish program/data locality by clustering resources based on their physical proximity and functional matching with user applications. We further develop randomized probing and cluster-token forwarding algorithms. The novelty of the HCO scheme lies in low overhead, fast speed and dynamism resilience in multi-resource discovery. The paper presents the HCO framework, new performance metrics, and simulation experimental results. This HCO scheme compares favorably with other resource management methods in static and dynamic Grid applications. In particular, it supports efficient resource clustering, reduces communications cost, and enhances resource discovery success rate in promoting large-scale distributed supercomputing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信