基于高光谱数据的相对深度估计

Ali Zia, J. Zhou, Yongsheng Gao
{"title":"基于高光谱数据的相对深度估计","authors":"Ali Zia, J. Zhou, Yongsheng Gao","doi":"10.1109/DICTA.2015.7371299","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of relative depth estimation using spatial defocus and spectral chromatic aberration presented in hyperspectral data. Our approach produces merged relative sparse depth map using two different methods. The first method constructs a histogram descriptor for edge pixels in each spectral band image. Due to the spectral chromatic aberration, different edge statistical information can be extracted from each band even at the same location. Variance among histogram bins provides input data for band-wise spatial defocus calculation. These band-wise statistical data are later combined to give the first sparse depth map. The second approach uses difference of neighboring spectral vectors to estimate relative depth. The two sparse maps with distinguishing features are finally combined and optimized to generate final sparse depth map. During the last step, normalization and smoothing are used to guarantee better consistency among edge pixels. Experimental results show that our method can generate better sparse depth map than alternative methods which operate on RGB images.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Relative Depth Estimation from Hyperspectral Data\",\"authors\":\"Ali Zia, J. Zhou, Yongsheng Gao\",\"doi\":\"10.1109/DICTA.2015.7371299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of relative depth estimation using spatial defocus and spectral chromatic aberration presented in hyperspectral data. Our approach produces merged relative sparse depth map using two different methods. The first method constructs a histogram descriptor for edge pixels in each spectral band image. Due to the spectral chromatic aberration, different edge statistical information can be extracted from each band even at the same location. Variance among histogram bins provides input data for band-wise spatial defocus calculation. These band-wise statistical data are later combined to give the first sparse depth map. The second approach uses difference of neighboring spectral vectors to estimate relative depth. The two sparse maps with distinguishing features are finally combined and optimized to generate final sparse depth map. During the last step, normalization and smoothing are used to guarantee better consistency among edge pixels. Experimental results show that our method can generate better sparse depth map than alternative methods which operate on RGB images.\",\"PeriodicalId\":214897,\"journal\":{\"name\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2015.7371299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了利用高光谱数据中的空间离焦和光谱色差进行相对深度估计的问题。我们的方法使用两种不同的方法生成合并的相对稀疏深度图。第一种方法为每个光谱带图像的边缘像素构建直方图描述符。由于光谱色差的存在,即使在同一位置,每个波段也可以提取不同的边缘统计信息。直方图箱间的方差为带向空间离焦计算提供了输入数据。这些带方向的统计数据随后被组合成第一个稀疏深度图。第二种方法是利用相邻光谱矢量的差值来估计相对深度。最后将两个具有显著特征的稀疏图进行组合优化,生成最终的稀疏深度图。在最后一步中,使用归一化和平滑来保证边缘像素之间更好的一致性。实验结果表明,该方法比其它基于RGB图像的稀疏深度图生成效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative Depth Estimation from Hyperspectral Data
This paper addresses the problem of relative depth estimation using spatial defocus and spectral chromatic aberration presented in hyperspectral data. Our approach produces merged relative sparse depth map using two different methods. The first method constructs a histogram descriptor for edge pixels in each spectral band image. Due to the spectral chromatic aberration, different edge statistical information can be extracted from each band even at the same location. Variance among histogram bins provides input data for band-wise spatial defocus calculation. These band-wise statistical data are later combined to give the first sparse depth map. The second approach uses difference of neighboring spectral vectors to estimate relative depth. The two sparse maps with distinguishing features are finally combined and optimized to generate final sparse depth map. During the last step, normalization and smoothing are used to guarantee better consistency among edge pixels. Experimental results show that our method can generate better sparse depth map than alternative methods which operate on RGB images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信