{"title":"高电子迁移率的高性能多晶硅纳米线晶体管的载流子输运分析","authors":"M. Oda, K. Sakuma, Y. Kamimuta, M. Saitoh","doi":"10.1109/IEDM.2015.7409637","DOIUrl":null,"url":null,"abstract":"This paper presents the fundamental carrier transport analysis of high-mobility poly-Si nanowire transistors (NW Tr). By adopting advanced SPC (solid-phase crystallization) process, record-high electron mobility (192cm2/Vs) and Ion (200μA/μm) at Ioff of 4nA/μm are achieved without using lasers or catalysts. Carrier density and temperature dependence of mobility, and also physical analysis of poly-Si crystallinity and the channel size, reveal that the origin of mobility degradation in conventional SPC poly-Si Tr. is Coulomb scattering due to defects inside grains as well as defects at grain boundaries and enhanced surface roughness scattering at poly-Si/gate oxide interface, all of which are weakened by advanced SPC process. At high carrier density, mobility of poly-Si nFETs and pFETs by advanced SPC process even exceeds bulk-Si (110) nFETs and (100) pFETs.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Carrier transport analysis of high-performance poly-Si Nanowire transistor fabricated by advanced SPC with record-high electron mobility\",\"authors\":\"M. Oda, K. Sakuma, Y. Kamimuta, M. Saitoh\",\"doi\":\"10.1109/IEDM.2015.7409637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the fundamental carrier transport analysis of high-mobility poly-Si nanowire transistors (NW Tr). By adopting advanced SPC (solid-phase crystallization) process, record-high electron mobility (192cm2/Vs) and Ion (200μA/μm) at Ioff of 4nA/μm are achieved without using lasers or catalysts. Carrier density and temperature dependence of mobility, and also physical analysis of poly-Si crystallinity and the channel size, reveal that the origin of mobility degradation in conventional SPC poly-Si Tr. is Coulomb scattering due to defects inside grains as well as defects at grain boundaries and enhanced surface roughness scattering at poly-Si/gate oxide interface, all of which are weakened by advanced SPC process. At high carrier density, mobility of poly-Si nFETs and pFETs by advanced SPC process even exceeds bulk-Si (110) nFETs and (100) pFETs.\",\"PeriodicalId\":336637,\"journal\":{\"name\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2015.7409637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2015.7409637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carrier transport analysis of high-performance poly-Si Nanowire transistor fabricated by advanced SPC with record-high electron mobility
This paper presents the fundamental carrier transport analysis of high-mobility poly-Si nanowire transistors (NW Tr). By adopting advanced SPC (solid-phase crystallization) process, record-high electron mobility (192cm2/Vs) and Ion (200μA/μm) at Ioff of 4nA/μm are achieved without using lasers or catalysts. Carrier density and temperature dependence of mobility, and also physical analysis of poly-Si crystallinity and the channel size, reveal that the origin of mobility degradation in conventional SPC poly-Si Tr. is Coulomb scattering due to defects inside grains as well as defects at grain boundaries and enhanced surface roughness scattering at poly-Si/gate oxide interface, all of which are weakened by advanced SPC process. At high carrier density, mobility of poly-Si nFETs and pFETs by advanced SPC process even exceeds bulk-Si (110) nFETs and (100) pFETs.