小闭图类的k-顶点。2参数化算法

Ignasi Sau, Giannos Stamoulis, D. Thilikos
{"title":"小闭图类的k-顶点。2参数化算法","authors":"Ignasi Sau, Giannos Stamoulis, D. Thilikos","doi":"10.1145/3519028","DOIUrl":null,"url":null,"abstract":"Let 𝒢 be a minor-closed graph class. We say that a graph G is a k-apex of 𝒢 if G contains a set S of at most k vertices such that G\\S belongs to 𝒢. We denote by 𝒜k (𝒢) the set of all graphs that are k-apices of 𝒢. In the first paper of this series, we obtained upper bounds on the size of the graphs in the minor-obstruction set of 𝒜k (𝒢), i.e., the minor-minimal set of graphs not belonging to 𝒜k (𝒢). In this article, we provide an algorithm that, given a graph G on n vertices, runs in time 2poly(k) ⋅ n3 and either returns a set S certifying that G ∈ 𝒜k (𝒢), or reports that G ∉ 𝒜k (𝒢). Here poly is a polynomial function whose degree depends on the maximum size of a minor-obstruction of 𝒢. In the special case where 𝒢 excludes some apex graph as a minor, we give an alternative algorithm running in 2poly(k) ⋅ n2-time.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms\",\"authors\":\"Ignasi Sau, Giannos Stamoulis, D. Thilikos\",\"doi\":\"10.1145/3519028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let 𝒢 be a minor-closed graph class. We say that a graph G is a k-apex of 𝒢 if G contains a set S of at most k vertices such that G\\\\S belongs to 𝒢. We denote by 𝒜k (𝒢) the set of all graphs that are k-apices of 𝒢. In the first paper of this series, we obtained upper bounds on the size of the graphs in the minor-obstruction set of 𝒜k (𝒢), i.e., the minor-minimal set of graphs not belonging to 𝒜k (𝒢). In this article, we provide an algorithm that, given a graph G on n vertices, runs in time 2poly(k) ⋅ n3 and either returns a set S certifying that G ∈ 𝒜k (𝒢), or reports that G ∉ 𝒜k (𝒢). Here poly is a polynomial function whose degree depends on the maximum size of a minor-obstruction of 𝒢. In the special case where 𝒢 excludes some apex graph as a minor, we give an alternative algorithm running in 2poly(k) ⋅ n2-time.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3519028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设𝒢是一个小闭图类。我们说一个图G是𝒢的k顶点,如果G包含一个集合S,它最多有k个顶点,使得G\S属于𝒢。我们用𝒜k(𝒢)表示为𝒢的k顶点的所有图的集合。在本系列的第一篇论文中,我们得到了𝒜k(𝒢)的小阻塞集,即不属于𝒜k(𝒢)的图的小最小集的图的大小的上界。在本文中,我们提供了一个算法,给定n个顶点上的图G,在2poly(k)⋅n3时间内运行,并且返回一个集S证明G∈𝒜k(𝒢),或者报告G∈𝒜k(𝒢)。这里poly是一个多项式函数,其程度取决于𝒢的小阻塞的最大尺寸。在特殊情况下,𝒢排除了一些顶点图作为次要图,我们给出了一个在2poly(k)⋅n2-time内运行的替代算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms
Let 𝒢 be a minor-closed graph class. We say that a graph G is a k-apex of 𝒢 if G contains a set S of at most k vertices such that G\S belongs to 𝒢. We denote by 𝒜k (𝒢) the set of all graphs that are k-apices of 𝒢. In the first paper of this series, we obtained upper bounds on the size of the graphs in the minor-obstruction set of 𝒜k (𝒢), i.e., the minor-minimal set of graphs not belonging to 𝒜k (𝒢). In this article, we provide an algorithm that, given a graph G on n vertices, runs in time 2poly(k) ⋅ n3 and either returns a set S certifying that G ∈ 𝒜k (𝒢), or reports that G ∉ 𝒜k (𝒢). Here poly is a polynomial function whose degree depends on the maximum size of a minor-obstruction of 𝒢. In the special case where 𝒢 excludes some apex graph as a minor, we give an alternative algorithm running in 2poly(k) ⋅ n2-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信