在Slashdot动物园通过整理准确检测巨魔

Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian
{"title":"在Slashdot动物园通过整理准确检测巨魔","authors":"Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian","doi":"10.1109/ASONAM.2014.6921581","DOIUrl":null,"url":null,"abstract":"Online social networks like Slashdot bring valuable information to millions of users - but their accuracy is based on the integrity of their user base. Unfortunately, there are many “trolls” on Slashdot who post misinformation and compromise system integrity. In this paper, we develop a general algorithm called TIA (short for Troll Identification Algorithm) to classify users of an online “signed” social network as malicious (e.g. trolls on Slashdot) or benign (i.e. normal honest users). Though applicable to many signed social networks, TIA has been tested on troll detection on Slashdot Zoo under a wide variety of parameter settings. Its running time is faster than many past algorithms and it is significantly more accurate than existing methods.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"1997 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Accurately detecting trolls in Slashdot Zoo via decluttering\",\"authors\":\"Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian\",\"doi\":\"10.1109/ASONAM.2014.6921581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social networks like Slashdot bring valuable information to millions of users - but their accuracy is based on the integrity of their user base. Unfortunately, there are many “trolls” on Slashdot who post misinformation and compromise system integrity. In this paper, we develop a general algorithm called TIA (short for Troll Identification Algorithm) to classify users of an online “signed” social network as malicious (e.g. trolls on Slashdot) or benign (i.e. normal honest users). Though applicable to many signed social networks, TIA has been tested on troll detection on Slashdot Zoo under a wide variety of parameter settings. Its running time is faster than many past algorithms and it is significantly more accurate than existing methods.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"1997 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

像Slashdot这样的在线社交网络为数百万用户带来了有价值的信息,但它们的准确性是基于用户群的完整性。不幸的是,Slashdot上有许多“喷子”,他们发布错误信息并损害系统完整性。在本文中,我们开发了一种称为TIA(巨魔识别算法的缩写)的通用算法,用于将在线“签名”社交网络的用户分类为恶意(例如Slashdot上的巨魔)或良性(即正常的诚实用户)。虽然TIA适用于许多签名社交网络,但它已经在Slashdot Zoo上进行了各种参数设置下的巨魔检测测试。它的运行时间比许多过去的算法要快,而且比现有的方法要准确得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurately detecting trolls in Slashdot Zoo via decluttering
Online social networks like Slashdot bring valuable information to millions of users - but their accuracy is based on the integrity of their user base. Unfortunately, there are many “trolls” on Slashdot who post misinformation and compromise system integrity. In this paper, we develop a general algorithm called TIA (short for Troll Identification Algorithm) to classify users of an online “signed” social network as malicious (e.g. trolls on Slashdot) or benign (i.e. normal honest users). Though applicable to many signed social networks, TIA has been tested on troll detection on Slashdot Zoo under a wide variety of parameter settings. Its running time is faster than many past algorithms and it is significantly more accurate than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信