基于时间处理的人工神经网络在小型水电站电能预测中的应用

P. Joaquim, J. Rosa
{"title":"基于时间处理的人工神经网络在小型水电站电能预测中的应用","authors":"P. Joaquim, J. Rosa","doi":"10.1109/IJCNN.2005.1556317","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to present a computational prediction of temporal series through artificial neural networks (ANN) with temporal features based on short-term memory structures and episodic long-term memory. The connectionist prediction is applied to a Brazilian small hydroelectric power station, with generation capacity of 15 MWh, because conventional prediction statistical techniques show inadequacy in relation to noise, acquisition fails, and need for generalization, when applied to this model. Departing from the proposed system, it is intended also to develop, in the future, a non-linear complex system, employing ANNs, with the inclusion of new variables in the decision process, in addition to the episodic memory model, which is considered computationally feasible with the current available resources.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"2008 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks for temporal processing applied to prediction of electric energy in small hydroelectric power stations\",\"authors\":\"P. Joaquim, J. Rosa\",\"doi\":\"10.1109/IJCNN.2005.1556317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to present a computational prediction of temporal series through artificial neural networks (ANN) with temporal features based on short-term memory structures and episodic long-term memory. The connectionist prediction is applied to a Brazilian small hydroelectric power station, with generation capacity of 15 MWh, because conventional prediction statistical techniques show inadequacy in relation to noise, acquisition fails, and need for generalization, when applied to this model. Departing from the proposed system, it is intended also to develop, in the future, a non-linear complex system, employing ANNs, with the inclusion of new variables in the decision process, in addition to the episodic memory model, which is considered computationally feasible with the current available resources.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"2008 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过基于短期记忆结构和情景长期记忆的具有时间特征的人工神经网络(ANN)对时间序列进行计算预测。由于传统的预测统计技术在应用于该模型时显示出与噪声、采集失败和需要泛化相关的不足,因此将连接主义预测应用于巴西的一个发电能力为15兆瓦时的小型水力发电站。从提出的系统出发,它还打算在未来开发一个非线性复杂系统,采用人工神经网络,在决策过程中包括新的变量,除了情景记忆模型,这被认为在当前可用资源的计算上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural networks for temporal processing applied to prediction of electric energy in small hydroelectric power stations
The purpose of this work is to present a computational prediction of temporal series through artificial neural networks (ANN) with temporal features based on short-term memory structures and episodic long-term memory. The connectionist prediction is applied to a Brazilian small hydroelectric power station, with generation capacity of 15 MWh, because conventional prediction statistical techniques show inadequacy in relation to noise, acquisition fails, and need for generalization, when applied to this model. Departing from the proposed system, it is intended also to develop, in the future, a non-linear complex system, employing ANNs, with the inclusion of new variables in the decision process, in addition to the episodic memory model, which is considered computationally feasible with the current available resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信