基于模型的装配控制概念

W. Herfs, Adam Malik, W. Lohse, K. Fayzullin
{"title":"基于模型的装配控制概念","authors":"W. Herfs, Adam Malik, W. Lohse, K. Fayzullin","doi":"10.1109/ETFA.2013.6647971","DOIUrl":null,"url":null,"abstract":"Production cells are typically built up of many heterogeneous components which are controlled by a central unit such as a standard programmable logic controller. Engineering of such cell controllers is usually based on an imperative programming paradigm. All possible decision situations are defined manually and coded offline, which is an acceptable method for simple or fixed recurring automation tasks. Implementing complex control and adaptation strategies however leads to disproportionately high engineering efforts, which incur whenever process changes are required. This paper presents a modelbased assembly control concept and a cell control engineering methodology. The concept was validated using a micro-slab laser assembly process within a multi-robot assembly cell.","PeriodicalId":106678,"journal":{"name":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model-based assembly control concept\",\"authors\":\"W. Herfs, Adam Malik, W. Lohse, K. Fayzullin\",\"doi\":\"10.1109/ETFA.2013.6647971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production cells are typically built up of many heterogeneous components which are controlled by a central unit such as a standard programmable logic controller. Engineering of such cell controllers is usually based on an imperative programming paradigm. All possible decision situations are defined manually and coded offline, which is an acceptable method for simple or fixed recurring automation tasks. Implementing complex control and adaptation strategies however leads to disproportionately high engineering efforts, which incur whenever process changes are required. This paper presents a modelbased assembly control concept and a cell control engineering methodology. The concept was validated using a micro-slab laser assembly process within a multi-robot assembly cell.\",\"PeriodicalId\":106678,\"journal\":{\"name\":\"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2013.6647971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2013.6647971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生产单元通常由许多异构组件组成,这些组件由一个中央单元(如标准可编程逻辑控制器)控制。这种单元控制器的工程通常基于命令式编程范式。所有可能的决策情况都是手动定义并离线编码的,对于简单或固定的重复自动化任务来说,这是一种可接受的方法。然而,实施复杂的控制和适应策略会导致不成比例的高工程工作量,无论何时都需要过程更改。本文提出了一种基于模型的装配控制概念和单元控制工程方法。该概念在多机器人装配单元中使用微板激光装配过程进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based assembly control concept
Production cells are typically built up of many heterogeneous components which are controlled by a central unit such as a standard programmable logic controller. Engineering of such cell controllers is usually based on an imperative programming paradigm. All possible decision situations are defined manually and coded offline, which is an acceptable method for simple or fixed recurring automation tasks. Implementing complex control and adaptation strategies however leads to disproportionately high engineering efforts, which incur whenever process changes are required. This paper presents a modelbased assembly control concept and a cell control engineering methodology. The concept was validated using a micro-slab laser assembly process within a multi-robot assembly cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信