S3:智能选择无源网络测量的采样功能

Xingyu Ma, Chengchen Hu, Junchen Jiang, Jing Wang
{"title":"S3:智能选择无源网络测量的采样功能","authors":"Xingyu Ma, Chengchen Hu, Junchen Jiang, Jing Wang","doi":"10.1109/LCN.2011.6115368","DOIUrl":null,"url":null,"abstract":"Flow size statistics is a fundamental task of passive measurement. In order to bound the estimation error of passive measurement for both small and large flows, previous probabilistic counter updating algorithms used linear or nonlinear sampling function to automatically adjust the sampling rate. However, each of these methods employed a pre-set and fixed sampling function during the measurement period. As a result, the performance would vary for different flow distributions. In this paper, we propose a Smart Selection Sampling (S3) approach, which can tune the sampling function to reach a comparatively lower relative error. The key component of S3 is a heuristic algorithm leveraging the flow distribution information to determine a better sampling function so as to achieve better measurement accuracy. Experiments under real trace and synthetic traces demonstrate that S3 is more accurate than the previous work if given the same memory sizes to accommodate flow statistics counters.","PeriodicalId":437953,"journal":{"name":"2011 IEEE 36th Conference on Local Computer Networks","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"S3: Smart selection of sampling function for passive network measurement\",\"authors\":\"Xingyu Ma, Chengchen Hu, Junchen Jiang, Jing Wang\",\"doi\":\"10.1109/LCN.2011.6115368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow size statistics is a fundamental task of passive measurement. In order to bound the estimation error of passive measurement for both small and large flows, previous probabilistic counter updating algorithms used linear or nonlinear sampling function to automatically adjust the sampling rate. However, each of these methods employed a pre-set and fixed sampling function during the measurement period. As a result, the performance would vary for different flow distributions. In this paper, we propose a Smart Selection Sampling (S3) approach, which can tune the sampling function to reach a comparatively lower relative error. The key component of S3 is a heuristic algorithm leveraging the flow distribution information to determine a better sampling function so as to achieve better measurement accuracy. Experiments under real trace and synthetic traces demonstrate that S3 is more accurate than the previous work if given the same memory sizes to accommodate flow statistics counters.\",\"PeriodicalId\":437953,\"journal\":{\"name\":\"2011 IEEE 36th Conference on Local Computer Networks\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 36th Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2011.6115368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 36th Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2011.6115368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

流量统计是被动测量的一项基本任务。为了限制小流量和大流量被动测量的估计误差,以往的概率计数器更新算法采用线性或非线性采样函数来自动调整采样率。然而,这些方法在测量期间都采用了预先设定的固定采样函数。因此,在不同的流量分布下,性能会有所不同。在本文中,我们提出了一种智能选择采样(S3)方法,该方法可以调整采样函数以达到相对较低的相对误差。S3的关键组件是一种启发式算法,它利用流量分布信息来确定更好的采样函数,从而达到更好的测量精度。在真实跟踪和合成跟踪下的实验表明,如果给定相同的内存大小来容纳流量统计计数器,S3比以前的工作更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S3: Smart selection of sampling function for passive network measurement
Flow size statistics is a fundamental task of passive measurement. In order to bound the estimation error of passive measurement for both small and large flows, previous probabilistic counter updating algorithms used linear or nonlinear sampling function to automatically adjust the sampling rate. However, each of these methods employed a pre-set and fixed sampling function during the measurement period. As a result, the performance would vary for different flow distributions. In this paper, we propose a Smart Selection Sampling (S3) approach, which can tune the sampling function to reach a comparatively lower relative error. The key component of S3 is a heuristic algorithm leveraging the flow distribution information to determine a better sampling function so as to achieve better measurement accuracy. Experiments under real trace and synthetic traces demonstrate that S3 is more accurate than the previous work if given the same memory sizes to accommodate flow statistics counters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信