神经网络设计的构造和剪枝方法

M. Costa, A. Braga, B. R. Menezes
{"title":"神经网络设计的构造和剪枝方法","authors":"M. Costa, A. Braga, B. R. Menezes","doi":"10.1109/SBRN.2002.1181434","DOIUrl":null,"url":null,"abstract":"This paper presents methods to improve generalization of multilayer perceptron (MLP) by pruning the original topology without loss in performance. Topology information and validation sets are used. The results show that these techniques are able to choose a minimum network topology and to simplify trained networks.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Constructive and pruning methods for neural network design\",\"authors\":\"M. Costa, A. Braga, B. R. Menezes\",\"doi\":\"10.1109/SBRN.2002.1181434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents methods to improve generalization of multilayer perceptron (MLP) by pruning the original topology without loss in performance. Topology information and validation sets are used. The results show that these techniques are able to choose a minimum network topology and to simplify trained networks.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了在不损失性能的前提下,通过对多层感知器(MLP)的原始拓扑进行剪枝来提高其泛化性能的方法。使用拓扑信息和验证集。结果表明,这些技术能够选择最小的网络拓扑并简化训练后的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructive and pruning methods for neural network design
This paper presents methods to improve generalization of multilayer perceptron (MLP) by pruning the original topology without loss in performance. Topology information and validation sets are used. The results show that these techniques are able to choose a minimum network topology and to simplify trained networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信