红蜘蛛遇到瓢虫:连接查询有限确定性是不可确定的

Tomasz Gogacz, J. Marcinkowski
{"title":"红蜘蛛遇到瓢虫:连接查询有限确定性是不可确定的","authors":"Tomasz Gogacz, J. Marcinkowski","doi":"10.1145/2902251.2902288","DOIUrl":null,"url":null,"abstract":"We solve a well known and long-standing open problem in database theory, proving that Conjunctive Query Finite Determinacy Problem is undecidable. The technique we use builds on the top of the Red Spider method invented in our paper [GM15] to show undecidability of the same problem in the \"unrestricted case\" -- when database instances are allowed to be infinite. We also show a specific instance Q0, Q= \\Q1, Q2, ... Qk} such that the set Q of CQs does not determine CQ Q0 but finitely determines it. Finally, we claim that while Q0 is finitely determined by Q, there is no FO-rewriting of Q0, with respect to Q","PeriodicalId":158471,"journal":{"name":"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Red Spider Meets a Rainworm: Conjunctive Query Finite Determinacy Is Undecidable\",\"authors\":\"Tomasz Gogacz, J. Marcinkowski\",\"doi\":\"10.1145/2902251.2902288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve a well known and long-standing open problem in database theory, proving that Conjunctive Query Finite Determinacy Problem is undecidable. The technique we use builds on the top of the Red Spider method invented in our paper [GM15] to show undecidability of the same problem in the \\\"unrestricted case\\\" -- when database instances are allowed to be infinite. We also show a specific instance Q0, Q= \\\\Q1, Q2, ... Qk} such that the set Q of CQs does not determine CQ Q0 but finitely determines it. Finally, we claim that while Q0 is finitely determined by Q, there is no FO-rewriting of Q0, with respect to Q\",\"PeriodicalId\":158471,\"journal\":{\"name\":\"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2902251.2902288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902251.2902288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们解决了数据库理论中一个众所周知且长期存在的开放性问题,证明了合取查询有限确定性问题是不可确定的。我们使用的技术建立在论文[GM15]中发明的Red Spider方法的基础上,以显示“无限制情况”下相同问题的不可判定性——当数据库实例被允许为无限时。我们还展示了一个特定的实例Q0, Q= \Q1, Q2,…使得CQ的集合Q不决定CQ Q0,而是有限地决定CQ Q0。最后,我们声明虽然Q0是由Q有限决定的,但Q0对于Q没有fo重写
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Red Spider Meets a Rainworm: Conjunctive Query Finite Determinacy Is Undecidable
We solve a well known and long-standing open problem in database theory, proving that Conjunctive Query Finite Determinacy Problem is undecidable. The technique we use builds on the top of the Red Spider method invented in our paper [GM15] to show undecidability of the same problem in the "unrestricted case" -- when database instances are allowed to be infinite. We also show a specific instance Q0, Q= \Q1, Q2, ... Qk} such that the set Q of CQs does not determine CQ Q0 but finitely determines it. Finally, we claim that while Q0 is finitely determined by Q, there is no FO-rewriting of Q0, with respect to Q
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信