加速CNN计算:量化调整和网络大小调整

ANDARE '18 Pub Date : 2018-11-04 DOI:10.1145/3295816.3295820
Alexandre Vieira, F. Pratas, L. Sousa, A. Ilic
{"title":"加速CNN计算:量化调整和网络大小调整","authors":"Alexandre Vieira, F. Pratas, L. Sousa, A. Ilic","doi":"10.1145/3295816.3295820","DOIUrl":null,"url":null,"abstract":"The interest in developing cognitive aware systems, specially for vision applications based on artificial neural networks, has grown exponentially in the last years. While high performance systems are key for the success of current Convolutional Neural Network (CNN) implementations, there is a trend to bring these capabilities to embedded real-time systems. This work contributes to tackle this challenge by exploring CNNs design space. Namely, it combines parameter quantisation techniques with a proposed set of CNN architectural transformations to reduce resource and execution time costs on Field Programmable Gate Array (FPGA) devices while maintaining high classification accuracy. An hardware mapping methodology is also proposed for deploying resource constrained CNNs into a reconfigurable platform for efficient algorithm acceleration. The proposed transformations reduce accuracy loss due to quantization by 44% in average. Also, analysis of the performance results obtained in a Central Processing Unit (CPU)+FPGA platform show up to 50% execution time reduction when compared with a state-of-the-art implementation.","PeriodicalId":280329,"journal":{"name":"ANDARE '18","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating CNN computation: quantisation tuning and network resizing\",\"authors\":\"Alexandre Vieira, F. Pratas, L. Sousa, A. Ilic\",\"doi\":\"10.1145/3295816.3295820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interest in developing cognitive aware systems, specially for vision applications based on artificial neural networks, has grown exponentially in the last years. While high performance systems are key for the success of current Convolutional Neural Network (CNN) implementations, there is a trend to bring these capabilities to embedded real-time systems. This work contributes to tackle this challenge by exploring CNNs design space. Namely, it combines parameter quantisation techniques with a proposed set of CNN architectural transformations to reduce resource and execution time costs on Field Programmable Gate Array (FPGA) devices while maintaining high classification accuracy. An hardware mapping methodology is also proposed for deploying resource constrained CNNs into a reconfigurable platform for efficient algorithm acceleration. The proposed transformations reduce accuracy loss due to quantization by 44% in average. Also, analysis of the performance results obtained in a Central Processing Unit (CPU)+FPGA platform show up to 50% execution time reduction when compared with a state-of-the-art implementation.\",\"PeriodicalId\":280329,\"journal\":{\"name\":\"ANDARE '18\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANDARE '18\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3295816.3295820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANDARE '18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3295816.3295820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,人们对开发认知感知系统,特别是基于人工神经网络的视觉应用的兴趣呈指数级增长。虽然高性能系统是当前卷积神经网络(CNN)实现成功的关键,但将这些功能引入嵌入式实时系统是一种趋势。这项工作有助于通过探索cnn的设计空间来解决这一挑战。即,它将参数量化技术与一组提出的CNN架构转换相结合,以减少现场可编程门阵列(FPGA)设备上的资源和执行时间成本,同时保持较高的分类精度。提出了一种硬件映射方法,用于将资源受限的cnn部署到可重构平台中,以实现高效的算法加速。所提出的变换将量化导致的精度损失平均降低了44%。此外,在中央处理器(CPU)+FPGA平台上获得的性能结果分析显示,与最先进的实现相比,执行时间减少了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating CNN computation: quantisation tuning and network resizing
The interest in developing cognitive aware systems, specially for vision applications based on artificial neural networks, has grown exponentially in the last years. While high performance systems are key for the success of current Convolutional Neural Network (CNN) implementations, there is a trend to bring these capabilities to embedded real-time systems. This work contributes to tackle this challenge by exploring CNNs design space. Namely, it combines parameter quantisation techniques with a proposed set of CNN architectural transformations to reduce resource and execution time costs on Field Programmable Gate Array (FPGA) devices while maintaining high classification accuracy. An hardware mapping methodology is also proposed for deploying resource constrained CNNs into a reconfigurable platform for efficient algorithm acceleration. The proposed transformations reduce accuracy loss due to quantization by 44% in average. Also, analysis of the performance results obtained in a Central Processing Unit (CPU)+FPGA platform show up to 50% execution time reduction when compared with a state-of-the-art implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信