Niko Hanninen, A. Pulkkinen, A. Leino, T. Tarvainen
{"title":"利用贝叶斯方法补偿定量光声层析成像中扩散近似的建模误差","authors":"Niko Hanninen, A. Pulkkinen, A. Leino, T. Tarvainen","doi":"10.1117/12.2615866","DOIUrl":null,"url":null,"abstract":"In this work, the inverse problem problem of quantitative photoacoustic tomography is approached in a Bayesian framework. Modeling errors caused by an approximative light transport model are compensated by utilizing Bayesian approximation error modeling.","PeriodicalId":228295,"journal":{"name":"Opto-Acoustic Methods and Applications in Biophotonics V","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensating modeling errors of diffusion approximation in quantitative photoacoustic tomography using a Bayesian approach\",\"authors\":\"Niko Hanninen, A. Pulkkinen, A. Leino, T. Tarvainen\",\"doi\":\"10.1117/12.2615866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the inverse problem problem of quantitative photoacoustic tomography is approached in a Bayesian framework. Modeling errors caused by an approximative light transport model are compensated by utilizing Bayesian approximation error modeling.\",\"PeriodicalId\":228295,\"journal\":{\"name\":\"Opto-Acoustic Methods and Applications in Biophotonics V\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Acoustic Methods and Applications in Biophotonics V\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2615866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Acoustic Methods and Applications in Biophotonics V","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2615866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compensating modeling errors of diffusion approximation in quantitative photoacoustic tomography using a Bayesian approach
In this work, the inverse problem problem of quantitative photoacoustic tomography is approached in a Bayesian framework. Modeling errors caused by an approximative light transport model are compensated by utilizing Bayesian approximation error modeling.