关于分隔器,分隔器和时间与空间

R. Santhanam
{"title":"关于分隔器,分隔器和时间与空间","authors":"R. Santhanam","doi":"10.1109/CCC.2001.933895","DOIUrl":null,"url":null,"abstract":"Gives an extension of the result due to Paul, Pippenger, Szemeredi and Trotter (1983) that deterministic linear time (DTIME) is distinct from nondeterministic linear time (NTIME). We show that NTIME[n/spl radic/log*(n)] /spl ne/ DTIME[n/spl radic/log*(n)]. We show that if the class of multi-pushdown graphs has {o(n), o[n/log(n)]} segregators, then NTIME[n log(n)] /spl ne/ DTIME[n log(n)]. We also show that at least one of the following facts holds: (1) P /spl ne/ L, and (2) for all polynomially bounded constructible time bounds t, NTIME(t) /spl ne/ DTIME(t). We consider the problem of whether NTIME(t) is distinct from NSPACE(t) for constructible time bounds t. A pebble game on graphs is defined such that the existence of a \"good\" strategy for the pebble game on multi-pushdown graphs implies a \"good\" simulation of nondeterministic time-bounded machines by nondeterministic space-bounded machines. It is shown that there exists a \"good\" strategy for the pebble game on multi-pushdown graphs if the graphs have sublinear separators. Finally, we show that nondeterministic time-bounded Turing machines can be simulated by /spl Sigma//sub 4/ machines with an asymptotically smaller time bound, under the assumption that the class of multi-pushdown graphs has sublinear separators.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On separators, segregators and time versus space\",\"authors\":\"R. Santhanam\",\"doi\":\"10.1109/CCC.2001.933895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gives an extension of the result due to Paul, Pippenger, Szemeredi and Trotter (1983) that deterministic linear time (DTIME) is distinct from nondeterministic linear time (NTIME). We show that NTIME[n/spl radic/log*(n)] /spl ne/ DTIME[n/spl radic/log*(n)]. We show that if the class of multi-pushdown graphs has {o(n), o[n/log(n)]} segregators, then NTIME[n log(n)] /spl ne/ DTIME[n log(n)]. We also show that at least one of the following facts holds: (1) P /spl ne/ L, and (2) for all polynomially bounded constructible time bounds t, NTIME(t) /spl ne/ DTIME(t). We consider the problem of whether NTIME(t) is distinct from NSPACE(t) for constructible time bounds t. A pebble game on graphs is defined such that the existence of a \\\"good\\\" strategy for the pebble game on multi-pushdown graphs implies a \\\"good\\\" simulation of nondeterministic time-bounded machines by nondeterministic space-bounded machines. It is shown that there exists a \\\"good\\\" strategy for the pebble game on multi-pushdown graphs if the graphs have sublinear separators. Finally, we show that nondeterministic time-bounded Turing machines can be simulated by /spl Sigma//sub 4/ machines with an asymptotically smaller time bound, under the assumption that the class of multi-pushdown graphs has sublinear separators.\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

对Paul、Pippenger、Szemeredi和Trotter(1983)关于确定性线性时间(DTIME)区别于非确定性线性时间(NTIME)的结论进行了推广。我们证明了NTIME[n/spl radic/log*(n)] /spl ne/ DTIME[n/spl radic/log*(n)]。我们证明了如果多下推图类有{o(n), o[n/log(n)]}个分离器,那么NTIME[n log(n)] /spl ne/ DTIME[n log(n)]。我们还证明了以下至少一个事实成立:(1)P /spl ne/ L,(2)对于所有多项式有界的可构造时间界t, NTIME(t) /spl ne/ DTIME(t)。对于可构造的时间边界t,我们考虑NTIME(t)是否与NSPACE(t)不同的问题。定义了图上的一个卵石博弈,使得多下推图上卵石博弈的“好”策略的存在意味着非确定性空间有界机器对非确定性时间有界机器的“好”模拟。证明了在具有次线性分隔符的多下推图上,存在一个“好”的卵石博弈策略。最后,在假定多下推图类具有次线性分隔符的情况下,我们证明了具有渐近小时间界的/spl Sigma//sub - 4/机器可以模拟非确定性有界图灵机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On separators, segregators and time versus space
Gives an extension of the result due to Paul, Pippenger, Szemeredi and Trotter (1983) that deterministic linear time (DTIME) is distinct from nondeterministic linear time (NTIME). We show that NTIME[n/spl radic/log*(n)] /spl ne/ DTIME[n/spl radic/log*(n)]. We show that if the class of multi-pushdown graphs has {o(n), o[n/log(n)]} segregators, then NTIME[n log(n)] /spl ne/ DTIME[n log(n)]. We also show that at least one of the following facts holds: (1) P /spl ne/ L, and (2) for all polynomially bounded constructible time bounds t, NTIME(t) /spl ne/ DTIME(t). We consider the problem of whether NTIME(t) is distinct from NSPACE(t) for constructible time bounds t. A pebble game on graphs is defined such that the existence of a "good" strategy for the pebble game on multi-pushdown graphs implies a "good" simulation of nondeterministic time-bounded machines by nondeterministic space-bounded machines. It is shown that there exists a "good" strategy for the pebble game on multi-pushdown graphs if the graphs have sublinear separators. Finally, we show that nondeterministic time-bounded Turing machines can be simulated by /spl Sigma//sub 4/ machines with an asymptotically smaller time bound, under the assumption that the class of multi-pushdown graphs has sublinear separators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信