静止点附近的罕见事件模拟

P. Dupuis, K. Spiliopoulos
{"title":"静止点附近的罕见事件模拟","authors":"P. Dupuis, K. Spiliopoulos","doi":"10.1109/WSC.2014.7019921","DOIUrl":null,"url":null,"abstract":"In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities in the presence of rest points. We focus on reversible diffusion processes with small noise that have an asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the domain of interest. We motivate the construction of schemes that perform well both asymptotically and non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large. Examples and simulation results are provided.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rare event simulation in the neighborhood of a rest point\",\"authors\":\"P. Dupuis, K. Spiliopoulos\",\"doi\":\"10.1109/WSC.2014.7019921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities in the presence of rest points. We focus on reversible diffusion processes with small noise that have an asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the domain of interest. We motivate the construction of schemes that perform well both asymptotically and non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large. Examples and simulation results are provided.\",\"PeriodicalId\":446873,\"journal\":{\"name\":\"Proceedings of the Winter Simulation Conference 2014\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Winter Simulation Conference 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2014.7019921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7019921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文构造了存在休息点的有限时间退出概率的有效重要抽样蒙特卡罗格式。研究具有渐近稳定平衡点的小噪声可逆扩散过程。这项工作的主要新颖之处在于在兴趣域中包含了休息点。我们鼓励构造在渐近和非渐近都表现良好的方案。我们把注意力集中在噪声小而时间范围大的区域。给出了算例和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rare event simulation in the neighborhood of a rest point
In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities in the presence of rest points. We focus on reversible diffusion processes with small noise that have an asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the domain of interest. We motivate the construction of schemes that perform well both asymptotically and non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large. Examples and simulation results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信