{"title":"静止点附近的罕见事件模拟","authors":"P. Dupuis, K. Spiliopoulos","doi":"10.1109/WSC.2014.7019921","DOIUrl":null,"url":null,"abstract":"In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities in the presence of rest points. We focus on reversible diffusion processes with small noise that have an asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the domain of interest. We motivate the construction of schemes that perform well both asymptotically and non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large. Examples and simulation results are provided.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rare event simulation in the neighborhood of a rest point\",\"authors\":\"P. Dupuis, K. Spiliopoulos\",\"doi\":\"10.1109/WSC.2014.7019921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities in the presence of rest points. We focus on reversible diffusion processes with small noise that have an asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the domain of interest. We motivate the construction of schemes that perform well both asymptotically and non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large. Examples and simulation results are provided.\",\"PeriodicalId\":446873,\"journal\":{\"name\":\"Proceedings of the Winter Simulation Conference 2014\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Winter Simulation Conference 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2014.7019921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7019921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rare event simulation in the neighborhood of a rest point
In this paper, we construct efficient importance sampling Monte Carlo schemes for finite time exit probabilities in the presence of rest points. We focus on reversible diffusion processes with small noise that have an asymptotically stable equilibrium point. The main novelty of the work is the inclusion of rest points in the domain of interest. We motivate the construction of schemes that perform well both asymptotically and non-asymptotically. We concentrate on the regime where the noise is small and the time horizon is large. Examples and simulation results are provided.