压缩域中的摄像机变焦运动检测

Pavan Sandula, M. Okade
{"title":"压缩域中的摄像机变焦运动检测","authors":"Pavan Sandula, M. Okade","doi":"10.1109/ICORT46471.2019.9069604","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the application of local tetra patterns to the compressed domain camera zoom recognition problem. The primary aim is to separate the zooming frames from the non-zooming (panning, tilting) frames for which the block motion vector orientation information is modeled utilizing a 3× 3 neighborhood and local tetra patterns. These patterns are binarized followed by feature reduction using the concept of uniform patterns and finally fed to the C-SVM classifier for recognition purposes. Comparative analysis with state-of-the-art methods using ESME and H.264 obtained block motion vectors extracted from standard video sequences show superior performance for the proposed method.","PeriodicalId":147815,"journal":{"name":"2019 International Conference on Range Technology (ICORT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Camera Zoom Motion Detection in the Compressed Domain\",\"authors\":\"Pavan Sandula, M. Okade\",\"doi\":\"10.1109/ICORT46471.2019.9069604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the application of local tetra patterns to the compressed domain camera zoom recognition problem. The primary aim is to separate the zooming frames from the non-zooming (panning, tilting) frames for which the block motion vector orientation information is modeled utilizing a 3× 3 neighborhood and local tetra patterns. These patterns are binarized followed by feature reduction using the concept of uniform patterns and finally fed to the C-SVM classifier for recognition purposes. Comparative analysis with state-of-the-art methods using ESME and H.264 obtained block motion vectors extracted from standard video sequences show superior performance for the proposed method.\",\"PeriodicalId\":147815,\"journal\":{\"name\":\"2019 International Conference on Range Technology (ICORT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Range Technology (ICORT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORT46471.2019.9069604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Range Technology (ICORT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORT46471.2019.9069604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了局部四元模式在压缩域相机变焦识别中的应用。主要目的是将缩放帧与非缩放帧(平移,倾斜)帧分开,其中块运动矢量方向信息是利用3x3邻域和局部四元模式建模的。对这些模式进行二值化,然后使用统一模式的概念进行特征约简,最后将其提供给C-SVM分类器以进行识别。通过与目前最先进的ESME方法和H.264从标准视频序列中提取的块运动矢量进行对比分析,表明该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Camera Zoom Motion Detection in the Compressed Domain
In this paper we investigate the application of local tetra patterns to the compressed domain camera zoom recognition problem. The primary aim is to separate the zooming frames from the non-zooming (panning, tilting) frames for which the block motion vector orientation information is modeled utilizing a 3× 3 neighborhood and local tetra patterns. These patterns are binarized followed by feature reduction using the concept of uniform patterns and finally fed to the C-SVM classifier for recognition purposes. Comparative analysis with state-of-the-art methods using ESME and H.264 obtained block motion vectors extracted from standard video sequences show superior performance for the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信