基于观测器的线性系统非脆弱控制

Xuesheng Zhang, Wei Zhang
{"title":"基于观测器的线性系统非脆弱控制","authors":"Xuesheng Zhang, Wei Zhang","doi":"10.1109/AEMCSE50948.2020.00202","DOIUrl":null,"url":null,"abstract":"This paper focuses on observer-based non-fragile control for linear systems. First, a non-fragile observer is provided for linear systems. Then a sufficient condition which ensuring the stability of linear systems is provided by using Linear Matrix Inequalities(LMIs). Finally, a numerical example is obtained to show the validity of the condition above.","PeriodicalId":246841,"journal":{"name":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observer-Based non-Fragile Control for Linear Systems\",\"authors\":\"Xuesheng Zhang, Wei Zhang\",\"doi\":\"10.1109/AEMCSE50948.2020.00202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on observer-based non-fragile control for linear systems. First, a non-fragile observer is provided for linear systems. Then a sufficient condition which ensuring the stability of linear systems is provided by using Linear Matrix Inequalities(LMIs). Finally, a numerical example is obtained to show the validity of the condition above.\",\"PeriodicalId\":246841,\"journal\":{\"name\":\"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEMCSE50948.2020.00202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMCSE50948.2020.00202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究基于观测器的线性系统非脆弱控制。首先,给出了线性系统的非脆弱观测器。然后利用线性矩阵不等式给出了保证线性系统稳定的充分条件。最后通过数值算例验证了上述条件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observer-Based non-Fragile Control for Linear Systems
This paper focuses on observer-based non-fragile control for linear systems. First, a non-fragile observer is provided for linear systems. Then a sufficient condition which ensuring the stability of linear systems is provided by using Linear Matrix Inequalities(LMIs). Finally, a numerical example is obtained to show the validity of the condition above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信