无线胶囊内镜视频中溃疡检测的计算机辅助诊断系统

Said Charfi, Mohamed El Ansari
{"title":"无线胶囊内镜视频中溃疡检测的计算机辅助诊断系统","authors":"Said Charfi, Mohamed El Ansari","doi":"10.1109/ATSIP.2017.8075590","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new feature descriptor for automatic recognition of frames with ulcer in Wireless Capsule Endoscopy (WCE) images. The new approach is based on the fact that the ulcer disease exhibits various features that can not be detected with a single descriptor. Hence, we have combined two stages of the art descriptors in order to get more powerful one. Complete Local Binary Pattern (CLBP) descriptor is used to detect the texture information in the image. In parallel, the Global Local Oriented Edge Magnitude Pattern (Global LOEMP) descriptor is employed to extract the color features. Finally, we combine the feature vectors to get a more discriminating one. Experiments were conducted and the results are satisfactory.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy videos\",\"authors\":\"Said Charfi, Mohamed El Ansari\",\"doi\":\"10.1109/ATSIP.2017.8075590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new feature descriptor for automatic recognition of frames with ulcer in Wireless Capsule Endoscopy (WCE) images. The new approach is based on the fact that the ulcer disease exhibits various features that can not be detected with a single descriptor. Hence, we have combined two stages of the art descriptors in order to get more powerful one. Complete Local Binary Pattern (CLBP) descriptor is used to detect the texture information in the image. In parallel, the Global Local Oriented Edge Magnitude Pattern (Global LOEMP) descriptor is employed to extract the color features. Finally, we combine the feature vectors to get a more discriminating one. Experiments were conducted and the results are satisfactory.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种新的特征描述符,用于无线胶囊内窥镜(WCE)图像中溃疡帧的自动识别。这种新方法是基于这样一个事实,即溃疡疾病表现出各种特征,不能用单一的描述符来检测。因此,我们将美术描述符的两个阶段结合起来,以获得更强大的描述符。使用完全局部二值模式描述符检测图像中的纹理信息。同时,采用全局局部定向边缘幅度模式(Global LOEMP)描述符提取颜色特征。最后,我们结合特征向量得到一个更有区别的特征向量。实验结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy videos
In this paper, we present a new feature descriptor for automatic recognition of frames with ulcer in Wireless Capsule Endoscopy (WCE) images. The new approach is based on the fact that the ulcer disease exhibits various features that can not be detected with a single descriptor. Hence, we have combined two stages of the art descriptors in order to get more powerful one. Complete Local Binary Pattern (CLBP) descriptor is used to detect the texture information in the image. In parallel, the Global Local Oriented Edge Magnitude Pattern (Global LOEMP) descriptor is employed to extract the color features. Finally, we combine the feature vectors to get a more discriminating one. Experiments were conducted and the results are satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信