基于LDA的呼叫中心主题挖掘

Wenming Guo, Tianlang Deng
{"title":"基于LDA的呼叫中心主题挖掘","authors":"Wenming Guo, Tianlang Deng","doi":"10.1109/ICNC.2014.6975947","DOIUrl":null,"url":null,"abstract":"Latent Dirichlet Allocation, which is a non-supervised learning method, can be used for topic detection, automatic text categorization, keyword extraction and so on. It only focuses on the text itself, not considering other external correlation properties. External association property refers to some structured attributes that correspondence with the text data, for example, a paper usually has several properties like authors, publishing time etc. A telephone call usually has several properties like caller number, call time etc. To iron out flaws; we propose an improved model A-LDA based LDA. We use data sets from telephone call centers (a kind of data centers in rapid growth) to experiment on topic detection. The topic results show that A-LDA with introduce of external correlation properties, compared with the traditional LDA, is decreased in perplexity value and has better generalization performance. At the same time, we can obtain the topic that external attributes contained.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Topic mining for call centers based on LDA\",\"authors\":\"Wenming Guo, Tianlang Deng\",\"doi\":\"10.1109/ICNC.2014.6975947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent Dirichlet Allocation, which is a non-supervised learning method, can be used for topic detection, automatic text categorization, keyword extraction and so on. It only focuses on the text itself, not considering other external correlation properties. External association property refers to some structured attributes that correspondence with the text data, for example, a paper usually has several properties like authors, publishing time etc. A telephone call usually has several properties like caller number, call time etc. To iron out flaws; we propose an improved model A-LDA based LDA. We use data sets from telephone call centers (a kind of data centers in rapid growth) to experiment on topic detection. The topic results show that A-LDA with introduce of external correlation properties, compared with the traditional LDA, is decreased in perplexity value and has better generalization performance. At the same time, we can obtain the topic that external attributes contained.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Latent Dirichlet Allocation是一种非监督学习方法,可用于主题检测、文本自动分类、关键词提取等。它只关注文本本身,而不考虑其他外部相关属性。外部关联属性是指一些与文本数据对应的结构化属性,例如,一篇论文通常有几个属性,如作者、出版时间等。一个电话通常有几个属性,如来电者号码、通话时间等。消除缺陷;我们提出了一种改进的基于LDA的LDA模型。我们使用来自电话呼叫中心(一种快速增长的数据中心)的数据集来进行主题检测实验。课题结果表明,引入外部相关特性的A-LDA与传统LDA相比,perplexity值降低,具有更好的泛化性能。同时,我们可以获得外部属性所包含的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic mining for call centers based on LDA
Latent Dirichlet Allocation, which is a non-supervised learning method, can be used for topic detection, automatic text categorization, keyword extraction and so on. It only focuses on the text itself, not considering other external correlation properties. External association property refers to some structured attributes that correspondence with the text data, for example, a paper usually has several properties like authors, publishing time etc. A telephone call usually has several properties like caller number, call time etc. To iron out flaws; we propose an improved model A-LDA based LDA. We use data sets from telephone call centers (a kind of data centers in rapid growth) to experiment on topic detection. The topic results show that A-LDA with introduce of external correlation properties, compared with the traditional LDA, is decreased in perplexity value and has better generalization performance. At the same time, we can obtain the topic that external attributes contained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信