基于遗传算法的差分进化训练径向基函数网络规则提取

N. Naveen, V. Ravi, C. R. Rao
{"title":"基于遗传算法的差分进化训练径向基函数网络规则提取","authors":"N. Naveen, V. Ravi, C. R. Rao","doi":"10.1109/COASE.2009.5234172","DOIUrl":null,"url":null,"abstract":"In this paper, we present a GA based methodology for extracting rules from radial basis function neural network trained by differential evolution. Rules are extracted using GATree. Here outputs predicted by the differential evolution trained radial basis function network along with the input variables are fed to the GATree for rule extraction purpose. The performance of the hybrid method was tested on three benchmark datasets namely Iris, Wine and Wisconsin Breast Cancer, using 10-fold cross validation. The rules extracted by the hybrid yielded high accuracies on all datasets.","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Rule extraction from differential evolution trained radial basis function network using genetic algorithms\",\"authors\":\"N. Naveen, V. Ravi, C. R. Rao\",\"doi\":\"10.1109/COASE.2009.5234172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a GA based methodology for extracting rules from radial basis function neural network trained by differential evolution. Rules are extracted using GATree. Here outputs predicted by the differential evolution trained radial basis function network along with the input variables are fed to the GATree for rule extraction purpose. The performance of the hybrid method was tested on three benchmark datasets namely Iris, Wine and Wisconsin Breast Cancer, using 10-fold cross validation. The rules extracted by the hybrid yielded high accuracies on all datasets.\",\"PeriodicalId\":386046,\"journal\":{\"name\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2009.5234172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于遗传算法的差分进化训练的径向基函数神经网络规则提取方法。使用GATree提取规则。在这里,由差分进化训练的径向基函数网络预测的输出与输入变量一起被馈送到GATree进行规则提取。在Iris、Wine和Wisconsin Breast Cancer三个基准数据集上,采用10倍交叉验证对混合方法的性能进行了测试。混合提取的规则在所有数据集上都具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rule extraction from differential evolution trained radial basis function network using genetic algorithms
In this paper, we present a GA based methodology for extracting rules from radial basis function neural network trained by differential evolution. Rules are extracted using GATree. Here outputs predicted by the differential evolution trained radial basis function network along with the input variables are fed to the GATree for rule extraction purpose. The performance of the hybrid method was tested on three benchmark datasets namely Iris, Wine and Wisconsin Breast Cancer, using 10-fold cross validation. The rules extracted by the hybrid yielded high accuracies on all datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信