{"title":"电子束二极管使用铁电阴极","authors":"J. Ivers, L. Schachter, J. Nation, G. Kerslick","doi":"10.1063/1.353062","DOIUrl":null,"url":null,"abstract":"A new high current density electron source is investigated. The source consists of a polarized ceramic disk with aluminium electrodes coated on both faces. The front electrode is etched in a periodic grid to expose the ceramic beneath. A rapid change in the polarization state of the ceramic results in the emission of a high density electron cloud into a 1 to 10mm diode gap. The anode potential is maintained by a charged transmission line. Some of the emitted electrons traverse the gap and an electron current flows. The emitted electron current has been measured as a function of the gap spacing and the anode potential. Current densities in excess of 70 A/cm2 have been measured. The current is found to vary linearly with the anode voltage for gaps <; 10 mm, and exceeds the Child-Langmuir current by at least two orders of magnitude. The experimental data will be compared with predictions from a model based on the emission of a cloud of electrons from the ferroelectric which in turn reflex in the diode gap.","PeriodicalId":241775,"journal":{"name":"1992 9th International Conference on High-Power Particle Beams","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Electron beam diodes using ferroelectric cathodes\",\"authors\":\"J. Ivers, L. Schachter, J. Nation, G. Kerslick\",\"doi\":\"10.1063/1.353062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new high current density electron source is investigated. The source consists of a polarized ceramic disk with aluminium electrodes coated on both faces. The front electrode is etched in a periodic grid to expose the ceramic beneath. A rapid change in the polarization state of the ceramic results in the emission of a high density electron cloud into a 1 to 10mm diode gap. The anode potential is maintained by a charged transmission line. Some of the emitted electrons traverse the gap and an electron current flows. The emitted electron current has been measured as a function of the gap spacing and the anode potential. Current densities in excess of 70 A/cm2 have been measured. The current is found to vary linearly with the anode voltage for gaps <; 10 mm, and exceeds the Child-Langmuir current by at least two orders of magnitude. The experimental data will be compared with predictions from a model based on the emission of a cloud of electrons from the ferroelectric which in turn reflex in the diode gap.\",\"PeriodicalId\":241775,\"journal\":{\"name\":\"1992 9th International Conference on High-Power Particle Beams\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 9th International Conference on High-Power Particle Beams\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.353062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 9th International Conference on High-Power Particle Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.353062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new high current density electron source is investigated. The source consists of a polarized ceramic disk with aluminium electrodes coated on both faces. The front electrode is etched in a periodic grid to expose the ceramic beneath. A rapid change in the polarization state of the ceramic results in the emission of a high density electron cloud into a 1 to 10mm diode gap. The anode potential is maintained by a charged transmission line. Some of the emitted electrons traverse the gap and an electron current flows. The emitted electron current has been measured as a function of the gap spacing and the anode potential. Current densities in excess of 70 A/cm2 have been measured. The current is found to vary linearly with the anode voltage for gaps <; 10 mm, and exceeds the Child-Langmuir current by at least two orders of magnitude. The experimental data will be compared with predictions from a model based on the emission of a cloud of electrons from the ferroelectric which in turn reflex in the diode gap.