基于粒子群算法的虚拟化数据中心能耗感知虚拟机布局优化

Shangguang Wang, Zhipiao Liu, Zibin Zheng, Qibo Sun, Fangchun Yang
{"title":"基于粒子群算法的虚拟化数据中心能耗感知虚拟机布局优化","authors":"Shangguang Wang, Zhipiao Liu, Zibin Zheng, Qibo Sun, Fangchun Yang","doi":"10.1109/ICPADS.2013.26","DOIUrl":null,"url":null,"abstract":"A critical research issue is to lower the energy consumption of a virtualized data center by means of virtual machine placement optimization while satisfying the resource requirements of the cloud services. In this paper, we focus on different existing schemes and on the energy-aware virtual machine placement optimization problem of a heterogeneous virtualized data center. We attempt to explore a better alternative approach to minimizing the energy consumption, and we observe that particle swarm optimization (PSO) has considerable potential. However, the PSO must be improved to solve an optimization problem. The improvement includes redefining the parameters and operators of the PSO, adopting an energy-aware local fitness first strategy and designing a novel coding scheme. Using the improved PSO, an optimal virtual machine replacement scheme with the lowest energy consumption can be found. Experimental results indicate that our approach significantly outperforms other approaches, and can lessen 13%-23% energy consumption in the context of this paper.","PeriodicalId":160979,"journal":{"name":"2013 International Conference on Parallel and Distributed Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Particle Swarm Optimization for Energy-Aware Virtual Machine Placement Optimization in Virtualized Data Centers\",\"authors\":\"Shangguang Wang, Zhipiao Liu, Zibin Zheng, Qibo Sun, Fangchun Yang\",\"doi\":\"10.1109/ICPADS.2013.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical research issue is to lower the energy consumption of a virtualized data center by means of virtual machine placement optimization while satisfying the resource requirements of the cloud services. In this paper, we focus on different existing schemes and on the energy-aware virtual machine placement optimization problem of a heterogeneous virtualized data center. We attempt to explore a better alternative approach to minimizing the energy consumption, and we observe that particle swarm optimization (PSO) has considerable potential. However, the PSO must be improved to solve an optimization problem. The improvement includes redefining the parameters and operators of the PSO, adopting an energy-aware local fitness first strategy and designing a novel coding scheme. Using the improved PSO, an optimal virtual machine replacement scheme with the lowest energy consumption can be found. Experimental results indicate that our approach significantly outperforms other approaches, and can lessen 13%-23% energy consumption in the context of this paper.\",\"PeriodicalId\":160979,\"journal\":{\"name\":\"2013 International Conference on Parallel and Distributed Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2013.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2013.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116

摘要

如何在满足云服务的资源需求的同时,通过优化虚拟机布局来降低虚拟化数据中心的能耗是一个关键的研究问题。在本文中,我们重点研究了不同的现有方案以及异构虚拟化数据中心中能量感知的虚拟机布局优化问题。我们试图探索一种更好的替代方法来最小化能源消耗,我们观察到粒子群优化(PSO)具有相当大的潜力。但是,为了解决一个优化问题,必须对粒子群算法进行改进。改进包括重新定义粒子群的参数和算子,采用能量感知的局部适应度优先策略,设计新的编码方案。利用改进的粒子群算法,可以找到能耗最低的最优虚拟机替换方案。实验结果表明,我们的方法明显优于其他方法,在本文的背景下,可以减少13%-23%的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization for Energy-Aware Virtual Machine Placement Optimization in Virtualized Data Centers
A critical research issue is to lower the energy consumption of a virtualized data center by means of virtual machine placement optimization while satisfying the resource requirements of the cloud services. In this paper, we focus on different existing schemes and on the energy-aware virtual machine placement optimization problem of a heterogeneous virtualized data center. We attempt to explore a better alternative approach to minimizing the energy consumption, and we observe that particle swarm optimization (PSO) has considerable potential. However, the PSO must be improved to solve an optimization problem. The improvement includes redefining the parameters and operators of the PSO, adopting an energy-aware local fitness first strategy and designing a novel coding scheme. Using the improved PSO, an optimal virtual machine replacement scheme with the lowest energy consumption can be found. Experimental results indicate that our approach significantly outperforms other approaches, and can lessen 13%-23% energy consumption in the context of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信