一维运动方程的积分

G. Kotkin, V. Serbo
{"title":"一维运动方程的积分","authors":"G. Kotkin, V. Serbo","doi":"10.1093/oso/9780198853787.003.0014","DOIUrl":null,"url":null,"abstract":"If the potential energy is independent of time, the energy of the system remains constant during the motion of a closed system. A system with one degree of freedom allows for the determination of the law of motion in quadrature. In this chapter, the authors consider motion of the particles in the one-dimensional fields. They discuss also how the law and the period of a particle moving in the potential field change due to adding to the given field a small correction.","PeriodicalId":201389,"journal":{"name":"Exploring Classical Mechanics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of one-dimensional equations of motions\",\"authors\":\"G. Kotkin, V. Serbo\",\"doi\":\"10.1093/oso/9780198853787.003.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If the potential energy is independent of time, the energy of the system remains constant during the motion of a closed system. A system with one degree of freedom allows for the determination of the law of motion in quadrature. In this chapter, the authors consider motion of the particles in the one-dimensional fields. They discuss also how the law and the period of a particle moving in the potential field change due to adding to the given field a small correction.\",\"PeriodicalId\":201389,\"journal\":{\"name\":\"Exploring Classical Mechanics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploring Classical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198853787.003.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploring Classical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198853787.003.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果势能与时间无关,则在封闭系统运动过程中,系统的能量保持不变。具有一个自由度的系统允许确定正交运动定律。在这一章中,作者考虑了粒子在一维场中的运动。他们还讨论了粒子在势场中运动的定律和周期如何由于在给定的场中加上一个小的修正而发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of one-dimensional equations of motions
If the potential energy is independent of time, the energy of the system remains constant during the motion of a closed system. A system with one degree of freedom allows for the determination of the law of motion in quadrature. In this chapter, the authors consider motion of the particles in the one-dimensional fields. They discuss also how the law and the period of a particle moving in the potential field change due to adding to the given field a small correction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信