两阶段边缘检测的进化元胞自动机

A. Enescu, A. Andreica, L. Dioşan
{"title":"两阶段边缘检测的进化元胞自动机","authors":"A. Enescu, A. Andreica, L. Dioşan","doi":"10.1109/SYNASC.2018.00070","DOIUrl":null,"url":null,"abstract":"This paper presents an edge detection method based on Cellular Automata where the rules are evolved to optimize the edge detection in binary images. This method divides the edge detection problem into two sub–problems: on the one hand it trains the rules to detect the edge pixels, on the other hand it trains the rules to detect non–edge (background) pixels. Two best packets of rules are obtained from the training process. These packets of rules are applied in different orders or after they have been processed, thus resulting four different images on which the detection performance of the proposed method is evaluated.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolving Cellular Automata for Two-Stage Edge Detection\",\"authors\":\"A. Enescu, A. Andreica, L. Dioşan\",\"doi\":\"10.1109/SYNASC.2018.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an edge detection method based on Cellular Automata where the rules are evolved to optimize the edge detection in binary images. This method divides the edge detection problem into two sub–problems: on the one hand it trains the rules to detect the edge pixels, on the other hand it trains the rules to detect non–edge (background) pixels. Two best packets of rules are obtained from the training process. These packets of rules are applied in different orders or after they have been processed, thus resulting four different images on which the detection performance of the proposed method is evaluated.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于元胞自动机的边缘检测方法,通过演化规则来优化二值图像的边缘检测。该方法将边缘检测问题分为两个子问题:一方面训练检测边缘像素的规则,另一方面训练检测非边缘(背景)像素的规则。在训练过程中得到两个最优规则包。这些规则包以不同的顺序或经过处理后应用,从而产生四种不同的图像,以评估所提出方法的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving Cellular Automata for Two-Stage Edge Detection
This paper presents an edge detection method based on Cellular Automata where the rules are evolved to optimize the edge detection in binary images. This method divides the edge detection problem into two sub–problems: on the one hand it trains the rules to detect the edge pixels, on the other hand it trains the rules to detect non–edge (background) pixels. Two best packets of rules are obtained from the training process. These packets of rules are applied in different orders or after they have been processed, thus resulting four different images on which the detection performance of the proposed method is evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信