Edward A. Lee, M. Niknami, Thierry S. Nouidui, M. Wetter
{"title":"使用CyPhySim建模和模拟网络物理系统","authors":"Edward A. Lee, M. Niknami, Thierry S. Nouidui, M. Wetter","doi":"10.1109/EMSOFT.2015.7318266","DOIUrl":null,"url":null,"abstract":"This paper describes an open-source simulator for cyberphysical systems called CyPhySim that is based on Ptolemy II. This simulator supports classical (Runge-Kutta) and quantized-state simulation of ordinary differential equations, modal models (hybrid systems), discrete-event models, the Functional Mockup Interface (FMI) for model-exchange and co-simulation, discrete-time (periodic) systems, and algebraic loop solvers. CyPhySim provides a graphical editor, an XML file syntax for models, and an open API for programmatic construction of models. It includes an innovation called \"smooth tokens,\" which allow for a blend of numerical and symbolic computation, and for certain kinds of system models, dramatically reducing the computation required for simulation.","PeriodicalId":297297,"journal":{"name":"2015 International Conference on Embedded Software (EMSOFT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Modeling and simulating cyber-physical systems using CyPhySim\",\"authors\":\"Edward A. Lee, M. Niknami, Thierry S. Nouidui, M. Wetter\",\"doi\":\"10.1109/EMSOFT.2015.7318266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an open-source simulator for cyberphysical systems called CyPhySim that is based on Ptolemy II. This simulator supports classical (Runge-Kutta) and quantized-state simulation of ordinary differential equations, modal models (hybrid systems), discrete-event models, the Functional Mockup Interface (FMI) for model-exchange and co-simulation, discrete-time (periodic) systems, and algebraic loop solvers. CyPhySim provides a graphical editor, an XML file syntax for models, and an open API for programmatic construction of models. It includes an innovation called \\\"smooth tokens,\\\" which allow for a blend of numerical and symbolic computation, and for certain kinds of system models, dramatically reducing the computation required for simulation.\",\"PeriodicalId\":297297,\"journal\":{\"name\":\"2015 International Conference on Embedded Software (EMSOFT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2015.7318266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2015.7318266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and simulating cyber-physical systems using CyPhySim
This paper describes an open-source simulator for cyberphysical systems called CyPhySim that is based on Ptolemy II. This simulator supports classical (Runge-Kutta) and quantized-state simulation of ordinary differential equations, modal models (hybrid systems), discrete-event models, the Functional Mockup Interface (FMI) for model-exchange and co-simulation, discrete-time (periodic) systems, and algebraic loop solvers. CyPhySim provides a graphical editor, an XML file syntax for models, and an open API for programmatic construction of models. It includes an innovation called "smooth tokens," which allow for a blend of numerical and symbolic computation, and for certain kinds of system models, dramatically reducing the computation required for simulation.