基于循环神经网络长短期记忆的湿度预测模型

T. Wahyono, Sri Winarso Martyas Edi, A. Mulyani, D. Kurniadi
{"title":"基于循环神经网络长短期记忆的湿度预测模型","authors":"T. Wahyono, Sri Winarso Martyas Edi, A. Mulyani, D. Kurniadi","doi":"10.1109/ICITech50181.2021.9590164","DOIUrl":null,"url":null,"abstract":"Based on the importance of estimating air humidity in a region, this study proposes a method for air humidity prediction, based on deep learning using the Long Short Term Memory (LSTM) method. The results showed that LSTM, which is a variant of Recurrent Neural Network (RNN), can be used to predict air humidity better than other methods. The data training process by using the linear regression produced the MSE value of 0.417 and the RMSE value of 0.646, whereas the LSTM method produced the MSE value of 0.018 and the RMSE value of 0.136.","PeriodicalId":429669,"journal":{"name":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humidity Prediction Model using Long Short Term Memory in Recurrent Neural Network\",\"authors\":\"T. Wahyono, Sri Winarso Martyas Edi, A. Mulyani, D. Kurniadi\",\"doi\":\"10.1109/ICITech50181.2021.9590164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the importance of estimating air humidity in a region, this study proposes a method for air humidity prediction, based on deep learning using the Long Short Term Memory (LSTM) method. The results showed that LSTM, which is a variant of Recurrent Neural Network (RNN), can be used to predict air humidity better than other methods. The data training process by using the linear regression produced the MSE value of 0.417 and the RMSE value of 0.646, whereas the LSTM method produced the MSE value of 0.018 and the RMSE value of 0.136.\",\"PeriodicalId\":429669,\"journal\":{\"name\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITech50181.2021.9590164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITech50181.2021.9590164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于估算区域内空气湿度的重要性,本研究提出了一种基于长短期记忆(LSTM)方法的深度学习的空气湿度预测方法。结果表明,LSTM作为递归神经网络(RNN)的一种变体,能够较好地预测空气湿度。使用线性回归的数据训练过程产生的MSE值为0.417,RMSE值为0.646,而LSTM方法产生的MSE值为0.018,RMSE值为0.136。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humidity Prediction Model using Long Short Term Memory in Recurrent Neural Network
Based on the importance of estimating air humidity in a region, this study proposes a method for air humidity prediction, based on deep learning using the Long Short Term Memory (LSTM) method. The results showed that LSTM, which is a variant of Recurrent Neural Network (RNN), can be used to predict air humidity better than other methods. The data training process by using the linear regression produced the MSE value of 0.417 and the RMSE value of 0.646, whereas the LSTM method produced the MSE value of 0.018 and the RMSE value of 0.136.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信