设计用于生物模拟的人工有机体

W. Ashlock, D. Ashlock
{"title":"设计用于生物模拟的人工有机体","authors":"W. Ashlock, D. Ashlock","doi":"10.1109/CIBCB.2011.5948463","DOIUrl":null,"url":null,"abstract":"In this paper we investigate two types of artificial organism which have the potential to be useful in biological simulations at the genomic level, such as simulations of speciation or gene interaction. Biological problems of this type are usually studied either with simulations using artificial genes that are merely evolving strings with no phenotype, ignoring the possibly crucial contribution of natural selection, or with real biological data involving so much complexity that it is difficult to sort out the important factors. This research provides a middle ground. The artificial organisms are: gridwalkers (GWs), a variation on the self-avoiding walk problem, and plus-one-recall-store (PORS), a simple genetic programming maximum problem implemented with a context free grammar. Both are known to have rugged multimodal fitness landscapes. We define a new variation operator, a kind of aligned crossover for variable length strings, which we call Smith-Waterman crossover. The problems, using Smith-Waterman crossover, size-neutral crossover (a kind of non-aligned crossover defined in [3]), mutation only, and horizontal gene transfer (such as occurs in biology with retroviruses) are explored. We define a measure called fitness preservation to quantify the differences in their fitness landscapes and to provide guidance to researchers in determining which problem/variation operator set is best for their simulation.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Designing artificial organisms for use in biological simulations\",\"authors\":\"W. Ashlock, D. Ashlock\",\"doi\":\"10.1109/CIBCB.2011.5948463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate two types of artificial organism which have the potential to be useful in biological simulations at the genomic level, such as simulations of speciation or gene interaction. Biological problems of this type are usually studied either with simulations using artificial genes that are merely evolving strings with no phenotype, ignoring the possibly crucial contribution of natural selection, or with real biological data involving so much complexity that it is difficult to sort out the important factors. This research provides a middle ground. The artificial organisms are: gridwalkers (GWs), a variation on the self-avoiding walk problem, and plus-one-recall-store (PORS), a simple genetic programming maximum problem implemented with a context free grammar. Both are known to have rugged multimodal fitness landscapes. We define a new variation operator, a kind of aligned crossover for variable length strings, which we call Smith-Waterman crossover. The problems, using Smith-Waterman crossover, size-neutral crossover (a kind of non-aligned crossover defined in [3]), mutation only, and horizontal gene transfer (such as occurs in biology with retroviruses) are explored. We define a measure called fitness preservation to quantify the differences in their fitness landscapes and to provide guidance to researchers in determining which problem/variation operator set is best for their simulation.\",\"PeriodicalId\":395505,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2011.5948463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们研究了两种类型的人工生物,它们有可能在基因组水平的生物模拟中有用,例如物种形成或基因相互作用的模拟。这类生物学问题的研究通常要么使用人工基因进行模拟,这些基因仅仅是没有表型的进化串,忽略了自然选择可能的关键贡献,要么使用真实的生物学数据,这些数据太复杂了,很难找出重要的因素。这项研究提供了一个中间立场。这些人工生物是:网格行走者(GWs),一种自我避免行走问题的变体,以及加一回忆存储(PORS),一种用上下文无关语法实现的简单遗传规划最大化问题。两者都以崎岖的多模式健身景观而闻名。我们定义了一种新的变分算子,一种变长串的对齐交叉算子,我们称之为Smith-Waterman交叉算子。探讨了Smith-Waterman交叉、大小中性交叉([3]中定义的一种不对齐交叉)、仅突变和水平基因转移(如生物学中逆转录病毒发生的情况)等问题。我们定义了一种称为适应度保存的度量来量化它们的适应度景观的差异,并为研究人员确定哪个问题/变异算子集最适合他们的模拟提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing artificial organisms for use in biological simulations
In this paper we investigate two types of artificial organism which have the potential to be useful in biological simulations at the genomic level, such as simulations of speciation or gene interaction. Biological problems of this type are usually studied either with simulations using artificial genes that are merely evolving strings with no phenotype, ignoring the possibly crucial contribution of natural selection, or with real biological data involving so much complexity that it is difficult to sort out the important factors. This research provides a middle ground. The artificial organisms are: gridwalkers (GWs), a variation on the self-avoiding walk problem, and plus-one-recall-store (PORS), a simple genetic programming maximum problem implemented with a context free grammar. Both are known to have rugged multimodal fitness landscapes. We define a new variation operator, a kind of aligned crossover for variable length strings, which we call Smith-Waterman crossover. The problems, using Smith-Waterman crossover, size-neutral crossover (a kind of non-aligned crossover defined in [3]), mutation only, and horizontal gene transfer (such as occurs in biology with retroviruses) are explored. We define a measure called fitness preservation to quantify the differences in their fitness landscapes and to provide guidance to researchers in determining which problem/variation operator set is best for their simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信