利用感官属性和图像处理技术预测酸奶质量和消费者偏好的机器学习方法

Maha Hany, Shaheera Rashwan, Neveen M. Abdelmotilib
{"title":"利用感官属性和图像处理技术预测酸奶质量和消费者偏好的机器学习方法","authors":"Maha Hany, Shaheera Rashwan, Neveen M. Abdelmotilib","doi":"10.5121/mlaij.2023.10101","DOIUrl":null,"url":null,"abstract":"Prediction of quality and consumers’ preferences is essential task for food producers to improve their market share and reduce any gap in food safety standards. In this paper, we develop a machine learning method to predict yogurt preferences based on the sensory attributes and analysis of samples’ images using image processing texture and color feature extraction techniques. We compare three unsupervised ML feature selection techniques (Principal Component Analysis and Independent Component Analysis and t-distributed Stochastic Neighbour Embedding) with one supervised ML feature selection technique (Linear Discriminant Analysis) in terms of accuracy of classification. Results show the efficiency of the supervised ML feature selection technique over the traditional feature selection techniques.","PeriodicalId":347528,"journal":{"name":"Machine Learning and Applications: An International Journal","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Method for Prediction of Yogurt Quality and Consumers Preferencesusing Sensory Attributes and Image Processing Techniques\",\"authors\":\"Maha Hany, Shaheera Rashwan, Neveen M. Abdelmotilib\",\"doi\":\"10.5121/mlaij.2023.10101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of quality and consumers’ preferences is essential task for food producers to improve their market share and reduce any gap in food safety standards. In this paper, we develop a machine learning method to predict yogurt preferences based on the sensory attributes and analysis of samples’ images using image processing texture and color feature extraction techniques. We compare three unsupervised ML feature selection techniques (Principal Component Analysis and Independent Component Analysis and t-distributed Stochastic Neighbour Embedding) with one supervised ML feature selection technique (Linear Discriminant Analysis) in terms of accuracy of classification. Results show the efficiency of the supervised ML feature selection technique over the traditional feature selection techniques.\",\"PeriodicalId\":347528,\"journal\":{\"name\":\"Machine Learning and Applications: An International Journal\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning and Applications: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/mlaij.2023.10101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Applications: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mlaij.2023.10101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测质量和消费者的偏好是食品生产商提高市场份额和缩小食品安全标准差距的基本任务。在本文中,我们开发了一种机器学习方法来预测酸奶的偏好,该方法基于感官属性和使用图像处理纹理和颜色特征提取技术对样本图像进行分析。我们比较了三种无监督机器学习特征选择技术(主成分分析、独立成分分析和t分布随机邻居嵌入)和一种有监督机器学习特征选择技术(线性判别分析)在分类精度方面的差异。结果表明,有监督的机器学习特征选择技术比传统的特征选择技术更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Method for Prediction of Yogurt Quality and Consumers Preferencesusing Sensory Attributes and Image Processing Techniques
Prediction of quality and consumers’ preferences is essential task for food producers to improve their market share and reduce any gap in food safety standards. In this paper, we develop a machine learning method to predict yogurt preferences based on the sensory attributes and analysis of samples’ images using image processing texture and color feature extraction techniques. We compare three unsupervised ML feature selection techniques (Principal Component Analysis and Independent Component Analysis and t-distributed Stochastic Neighbour Embedding) with one supervised ML feature selection technique (Linear Discriminant Analysis) in terms of accuracy of classification. Results show the efficiency of the supervised ML feature selection technique over the traditional feature selection techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信