Onur Ülkü, Necip Gözüaçik, Senem Tanberk, M. Aydin, A. Zaim
{"title":"电信行业软件日志分类","authors":"Onur Ülkü, Necip Gözüaçik, Senem Tanberk, M. Aydin, A. Zaim","doi":"10.1109/UBMK52708.2021.9558985","DOIUrl":null,"url":null,"abstract":"Software system admins depend on log data for understanding system behavior, monitoring anomalies, tracking software bugs, and malfunctioning detection. Log analysis based on machine learning techniques enables to transform of raw logs into meaningful information that helps the DevOps team and administrators to solve problems. Al ensures to group similar logs together and keeps periodic logs more organized and sorted, allowing us to get to where we need to look faster. In this paper, we present a log classification system on log data generated by VoIP (Voice over Internet Protocol) soft-switch product. In this way, we targeted to detect the problem, direct it to the relevant department, allocate resources, and solve software bugs faster and more efficiently. Machine learning algorithms such as Linear Classifiers, Support Vector Machines, Decision Tree, Random Forest, Boosting, K-Nearest Neighbors, and Multilayer Perceptron are used for log classification.","PeriodicalId":106516,"journal":{"name":"2021 6th International Conference on Computer Science and Engineering (UBMK)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software Log Classification in Telecommunication Industry\",\"authors\":\"Onur Ülkü, Necip Gözüaçik, Senem Tanberk, M. Aydin, A. Zaim\",\"doi\":\"10.1109/UBMK52708.2021.9558985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software system admins depend on log data for understanding system behavior, monitoring anomalies, tracking software bugs, and malfunctioning detection. Log analysis based on machine learning techniques enables to transform of raw logs into meaningful information that helps the DevOps team and administrators to solve problems. Al ensures to group similar logs together and keeps periodic logs more organized and sorted, allowing us to get to where we need to look faster. In this paper, we present a log classification system on log data generated by VoIP (Voice over Internet Protocol) soft-switch product. In this way, we targeted to detect the problem, direct it to the relevant department, allocate resources, and solve software bugs faster and more efficiently. Machine learning algorithms such as Linear Classifiers, Support Vector Machines, Decision Tree, Random Forest, Boosting, K-Nearest Neighbors, and Multilayer Perceptron are used for log classification.\",\"PeriodicalId\":106516,\"journal\":{\"name\":\"2021 6th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK52708.2021.9558985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK52708.2021.9558985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software Log Classification in Telecommunication Industry
Software system admins depend on log data for understanding system behavior, monitoring anomalies, tracking software bugs, and malfunctioning detection. Log analysis based on machine learning techniques enables to transform of raw logs into meaningful information that helps the DevOps team and administrators to solve problems. Al ensures to group similar logs together and keeps periodic logs more organized and sorted, allowing us to get to where we need to look faster. In this paper, we present a log classification system on log data generated by VoIP (Voice over Internet Protocol) soft-switch product. In this way, we targeted to detect the problem, direct it to the relevant department, allocate resources, and solve software bugs faster and more efficiently. Machine learning algorithms such as Linear Classifiers, Support Vector Machines, Decision Tree, Random Forest, Boosting, K-Nearest Neighbors, and Multilayer Perceptron are used for log classification.