SIF:一个稳定性合约仪器和分析的框架

Chao Peng, Sefa Akça, A. Rajan
{"title":"SIF:一个稳定性合约仪器和分析的框架","authors":"Chao Peng, Sefa Akça, A. Rajan","doi":"10.1109/APSEC48747.2019.00069","DOIUrl":null,"url":null,"abstract":"Solidity is an object-oriented and high-level language for writing smart contracts that are used to execute, verify and enforce credible transactions on permissionless blockchains. In the last few years, analysis of smart contracts has raised considerable interest and numerous techniques have been proposed to check the presence of vulnerabilities in them. Current techniques lack traceability in source code and have widely differing work flows. There is no single unifying framework for analysis, instrumentation, optimisation and code generation of Solidity contracts at the source code level. In this paper, we present SIF, a comprehensive framework for Solidity contract analysis, query, instrumentation, and code generation. SIF provides support for Solidity contract developers and testers to build source level techniques for analysis, understanding, diagnostics, optimisations and code generation. We show feasibility and applicability of the framework by building practical tools on top of it and running them on 1838 real smart contracts deployed on the Ethereum network.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"SIF: A Framework for Solidity Contract Instrumentation and Analysis\",\"authors\":\"Chao Peng, Sefa Akça, A. Rajan\",\"doi\":\"10.1109/APSEC48747.2019.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solidity is an object-oriented and high-level language for writing smart contracts that are used to execute, verify and enforce credible transactions on permissionless blockchains. In the last few years, analysis of smart contracts has raised considerable interest and numerous techniques have been proposed to check the presence of vulnerabilities in them. Current techniques lack traceability in source code and have widely differing work flows. There is no single unifying framework for analysis, instrumentation, optimisation and code generation of Solidity contracts at the source code level. In this paper, we present SIF, a comprehensive framework for Solidity contract analysis, query, instrumentation, and code generation. SIF provides support for Solidity contract developers and testers to build source level techniques for analysis, understanding, diagnostics, optimisations and code generation. We show feasibility and applicability of the framework by building practical tools on top of it and running them on 1838 real smart contracts deployed on the Ethereum network.\",\"PeriodicalId\":325642,\"journal\":{\"name\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC48747.2019.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

Solidity是一种面向对象的高级语言,用于编写智能合约,用于在无权限区块链上执行、验证和执行可信交易。在过去的几年中,对智能合约的分析引起了相当大的兴趣,并提出了许多技术来检查其中是否存在漏洞。当前的技术缺乏源代码的可追溯性,并且工作流程差异很大。在源代码级别,对于Solidity合约的分析、检测、优化和代码生成,没有一个统一的框架。在本文中,我们介绍了SIF,一个用于Solidity合约分析、查询、检测和代码生成的综合框架。SIF为Solidity合同开发人员和测试人员提供支持,以构建用于分析、理解、诊断、优化和代码生成的源代码级技术。我们通过在其上构建实用工具并在部署在以太坊网络上的1838个真实智能合约上运行它们来展示该框架的可行性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIF: A Framework for Solidity Contract Instrumentation and Analysis
Solidity is an object-oriented and high-level language for writing smart contracts that are used to execute, verify and enforce credible transactions on permissionless blockchains. In the last few years, analysis of smart contracts has raised considerable interest and numerous techniques have been proposed to check the presence of vulnerabilities in them. Current techniques lack traceability in source code and have widely differing work flows. There is no single unifying framework for analysis, instrumentation, optimisation and code generation of Solidity contracts at the source code level. In this paper, we present SIF, a comprehensive framework for Solidity contract analysis, query, instrumentation, and code generation. SIF provides support for Solidity contract developers and testers to build source level techniques for analysis, understanding, diagnostics, optimisations and code generation. We show feasibility and applicability of the framework by building practical tools on top of it and running them on 1838 real smart contracts deployed on the Ethereum network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信