基于萤火虫算法和遗传算法的永磁同步电机PI控制器优化设计

S. Bazi, R. Benzid, M. N. Said
{"title":"基于萤火虫算法和遗传算法的永磁同步电机PI控制器优化设计","authors":"S. Bazi, R. Benzid, M. N. Said","doi":"10.1109/ICOSC.2017.7958699","DOIUrl":null,"url":null,"abstract":"In this paper, both Firefly Algorithm (FA) and Genetic Algorithm (GA) are used to tune the PI controller parameters in PMSM servo system. Consequently, these algorithms are involved to find the optimized proportional-integral (PI) gains by minimizing the time domain cost function. Comparing (FA) and (GA) based controllers, it can be remarked that the first one is better than the last one which allows us to conclude that (FA) is more suitable for parameters optimization of a (PI) controller.","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimum PI controller design in PMSM using Firefly Algorithm and Genetic Algorithm\",\"authors\":\"S. Bazi, R. Benzid, M. N. Said\",\"doi\":\"10.1109/ICOSC.2017.7958699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, both Firefly Algorithm (FA) and Genetic Algorithm (GA) are used to tune the PI controller parameters in PMSM servo system. Consequently, these algorithms are involved to find the optimized proportional-integral (PI) gains by minimizing the time domain cost function. Comparing (FA) and (GA) based controllers, it can be remarked that the first one is better than the last one which allows us to conclude that (FA) is more suitable for parameters optimization of a (PI) controller.\",\"PeriodicalId\":113395,\"journal\":{\"name\":\"2017 6th International Conference on Systems and Control (ICSC)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Systems and Control (ICSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2017.7958699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用萤火虫算法(FA)和遗传算法(GA)对永磁同步电机伺服系统中的PI控制器参数进行整定。因此,这些算法涉及到通过最小化时域成本函数来找到优化的比例积分(PI)增益。比较(FA)和(GA)基于控制器,可以看出第一个比最后一个更好,这使我们得出(FA)更适合于(PI)控制器的参数优化的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum PI controller design in PMSM using Firefly Algorithm and Genetic Algorithm
In this paper, both Firefly Algorithm (FA) and Genetic Algorithm (GA) are used to tune the PI controller parameters in PMSM servo system. Consequently, these algorithms are involved to find the optimized proportional-integral (PI) gains by minimizing the time domain cost function. Comparing (FA) and (GA) based controllers, it can be remarked that the first one is better than the last one which allows us to conclude that (FA) is more suitable for parameters optimization of a (PI) controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信