靶向SOS1的抗肿瘤小分子抑制剂研究进展

景坤 黄
{"title":"靶向SOS1的抗肿瘤小分子抑制剂研究进展","authors":"景坤 黄","doi":"10.12677/wjcr.2023.132014","DOIUrl":null,"url":null,"abstract":"Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, accounting for approximately 30% of all human cancer mutations. RAS gene is associated with several intracellular pathways which control proliferation, differentiation and other physiological processes. As a central node in RAS signaling pathway, SOS1 (son of sevenless 1) can activate RAS proteins through protein-protein interaction, thus explaining that SOS1 small molecule inhibitors offer an opportunity to treat RAS-dependent cancers. Its potential in the treatment of RAS mutation-driven cancers has been demonstrated in recent literature and patent documents, and the structure and indications of these SOS1 small molecule inhibitors are summarized to provide reference for further research and application.","PeriodicalId":286101,"journal":{"name":"World Journal of Cancer Research","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress of Antitumor Small Molecule Inhibitor Targeting SOS1\",\"authors\":\"景坤 黄\",\"doi\":\"10.12677/wjcr.2023.132014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, accounting for approximately 30% of all human cancer mutations. RAS gene is associated with several intracellular pathways which control proliferation, differentiation and other physiological processes. As a central node in RAS signaling pathway, SOS1 (son of sevenless 1) can activate RAS proteins through protein-protein interaction, thus explaining that SOS1 small molecule inhibitors offer an opportunity to treat RAS-dependent cancers. Its potential in the treatment of RAS mutation-driven cancers has been demonstrated in recent literature and patent documents, and the structure and indications of these SOS1 small molecule inhibitors are summarized to provide reference for further research and application.\",\"PeriodicalId\":286101,\"journal\":{\"name\":\"World Journal of Cancer Research\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Cancer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12677/wjcr.2023.132014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Cancer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12677/wjcr.2023.132014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Progress of Antitumor Small Molecule Inhibitor Targeting SOS1
Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, accounting for approximately 30% of all human cancer mutations. RAS gene is associated with several intracellular pathways which control proliferation, differentiation and other physiological processes. As a central node in RAS signaling pathway, SOS1 (son of sevenless 1) can activate RAS proteins through protein-protein interaction, thus explaining that SOS1 small molecule inhibitors offer an opportunity to treat RAS-dependent cancers. Its potential in the treatment of RAS mutation-driven cancers has been demonstrated in recent literature and patent documents, and the structure and indications of these SOS1 small molecule inhibitors are summarized to provide reference for further research and application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信