线性Steiner树和树形问题的次指数算法

F. Fomin, Sudeshna Kolay, D. Lokshtanov, Fahad Panolan, Saket Saurabh
{"title":"线性Steiner树和树形问题的次指数算法","authors":"F. Fomin, Sudeshna Kolay, D. Lokshtanov, Fahad Panolan, Saket Saurabh","doi":"10.1145/3381420","DOIUrl":null,"url":null,"abstract":"A rectilinear Steiner tree for a set K of points in the plane is a tree that connects k using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K={z1,z2,…, zn} of n points in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for k of smallest possible total length. A rectilinear Steiner arborescence for a set k of points and a root r ∈ K is a rectilinear Steiner tree T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K, and the task is to find a rectilinear Steiner arborescence for K, rooted at r of smallest possible total length. In this article, we design deterministic algorithms for these problems that run in 2O(√ nlog n) time.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems\",\"authors\":\"F. Fomin, Sudeshna Kolay, D. Lokshtanov, Fahad Panolan, Saket Saurabh\",\"doi\":\"10.1145/3381420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rectilinear Steiner tree for a set K of points in the plane is a tree that connects k using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K={z1,z2,…, zn} of n points in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for k of smallest possible total length. A rectilinear Steiner arborescence for a set k of points and a root r ∈ K is a rectilinear Steiner tree T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K, and the task is to find a rectilinear Steiner arborescence for K, rooted at r of smallest possible total length. In this article, we design deterministic algorithms for these problems that run in 2O(√ nlog n) time.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3381420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3381420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

平面上有K个点的直线斯坦纳树是用水平线和垂直线把K点连接起来的树。在线性斯坦纳树问题中,输入是欧几里得平面(R2)上n个点的集合K={z1,z2,…,zn},目标是找到K总长度最小的线性斯坦纳树。对于k个点和根r∈k的集合,一个线性斯坦纳树形是k的线性斯坦纳树T,使得T中从r到任意点z∈k的路径是最短路径。在线性斯坦纳树形问题中,输入是R2中n个点的集合K,其根r∈K,任务是求出K的一个总长度最小的、根在r的直线斯坦纳树形。在本文中,我们为这些问题设计了确定性算法,运行时间为20(√nlog n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems
A rectilinear Steiner tree for a set K of points in the plane is a tree that connects k using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, the input is a set K={z1,z2,…, zn} of n points in the Euclidean plane (R2), and the goal is to find a rectilinear Steiner tree for k of smallest possible total length. A rectilinear Steiner arborescence for a set k of points and a root r ∈ K is a rectilinear Steiner tree T for K such that the path in T from r to any point z ∈ K is a shortest path. In the Rectilinear Steiner Arborescence problem, the input is a set K of n points in R2, and a root r ∈ K, and the task is to find a rectilinear Steiner arborescence for K, rooted at r of smallest possible total length. In this article, we design deterministic algorithms for these problems that run in 2O(√ nlog n) time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信