确定最适合的基于机器学习的脑MRI多光谱数据分割的直方图归一化技术

Andrea Koble, Ágnes Győrfi, Szabolcs Csaholczi, Béla Surányi, Lehel Dénes-Fazakas, L. Kovács, L. Szilágyi
{"title":"确定最适合的基于机器学习的脑MRI多光谱数据分割的直方图归一化技术","authors":"Andrea Koble, Ágnes Győrfi, Szabolcs Csaholczi, Béla Surányi, Lehel Dénes-Fazakas, L. Kovács, L. Szilágyi","doi":"10.1109/africon51333.2021.9570990","DOIUrl":null,"url":null,"abstract":"The main drawback of magnetic resonance imaging (MRI) represents the lack of a standard intensity scale. All observed numerical values are relative and can only be interpreted together with their context. Before feeding MRI data volumes to supervised learning segmentation procedures, their histograms need to be registered to each other, or in other words, they need a so-called normalization. The most popular histogram normalization technique used to assist brain MRI segmentation is the algorithm proposed by Nyuĺ et al in 2000, which aligns the histograms of a batch of MRI volumes without paying attention to possible focal lesions that might distort the histogram. Alternately, some recent works applied histogram normalization based on a simple linear transform, and reported achieving slightly better accuracy with them. This paper proposes to investigate, which is the most suitable method and parameter settings for histogram normalization to be performed before the segmentation of brain MRI images, separately in the cases of absence and presence of focal lesions.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data\",\"authors\":\"Andrea Koble, Ágnes Győrfi, Szabolcs Csaholczi, Béla Surányi, Lehel Dénes-Fazakas, L. Kovács, L. Szilágyi\",\"doi\":\"10.1109/africon51333.2021.9570990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main drawback of magnetic resonance imaging (MRI) represents the lack of a standard intensity scale. All observed numerical values are relative and can only be interpreted together with their context. Before feeding MRI data volumes to supervised learning segmentation procedures, their histograms need to be registered to each other, or in other words, they need a so-called normalization. The most popular histogram normalization technique used to assist brain MRI segmentation is the algorithm proposed by Nyuĺ et al in 2000, which aligns the histograms of a batch of MRI volumes without paying attention to possible focal lesions that might distort the histogram. Alternately, some recent works applied histogram normalization based on a simple linear transform, and reported achieving slightly better accuracy with them. This paper proposes to investigate, which is the most suitable method and parameter settings for histogram normalization to be performed before the segmentation of brain MRI images, separately in the cases of absence and presence of focal lesions.\",\"PeriodicalId\":170342,\"journal\":{\"name\":\"2021 IEEE AFRICON\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE AFRICON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/africon51333.2021.9570990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

磁共振成像(MRI)的主要缺点是缺乏标准的强度尺度。所有观测到的数值都是相对的,只能与它们的上下文一起解释。在将MRI数据量提供给监督学习分割程序之前,它们的直方图需要相互注册,换句话说,它们需要所谓的归一化。用于辅助脑MRI分割的最流行的直方图归一化技术是nyu茹等人在2000年提出的算法,该算法对一批MRI体积的直方图进行对齐,而不考虑可能扭曲直方图的局灶性病变。另外,最近的一些研究应用了基于简单线性变换的直方图归一化,并报道了使用它们获得稍好的准确性。本文拟分别探讨在局灶性病变不存在和局灶性病变存在的情况下,对脑MRI图像进行分割前进行直方图归一化最合适的方法和参数设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data
The main drawback of magnetic resonance imaging (MRI) represents the lack of a standard intensity scale. All observed numerical values are relative and can only be interpreted together with their context. Before feeding MRI data volumes to supervised learning segmentation procedures, their histograms need to be registered to each other, or in other words, they need a so-called normalization. The most popular histogram normalization technique used to assist brain MRI segmentation is the algorithm proposed by Nyuĺ et al in 2000, which aligns the histograms of a batch of MRI volumes without paying attention to possible focal lesions that might distort the histogram. Alternately, some recent works applied histogram normalization based on a simple linear transform, and reported achieving slightly better accuracy with them. This paper proposes to investigate, which is the most suitable method and parameter settings for histogram normalization to be performed before the segmentation of brain MRI images, separately in the cases of absence and presence of focal lesions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信