MIMO模糊系统迭代学习的新颖性检测

J. S. Junior, Jérôme Mendes, R. Araújo, J. Paulo, C. Premebida
{"title":"MIMO模糊系统迭代学习的新颖性检测","authors":"J. S. Junior, Jérôme Mendes, R. Araújo, J. Paulo, C. Premebida","doi":"10.1109/INDIN45523.2021.9557354","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology for iterative learning of multi-input multi-output (MIMO) fuzzy models focusing on dynamic system identification. The first step of the proposed method is the learning of the antecedent part of the fuzzy system, which is learned iteratively, where fuzzy rules can be added or merged based on the presented novelty detection and similarity criteria defined by a recursive extension of the Gath-Geva clustering algorithm. Then, the consequent part consists in the direct implementation of a non-recursive fuzzy approach that uses global least squares, Observer Kalman Filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA). The proposed method is validated using experimental data from a real quadrotor aerial robot, a nonlinear dynamic system. Using quantitative performance metrics, the proposed method is compared with Hammerstein-Wiener models (H.-W.), nonlinear autoregressive models with exogenous input (NARX), and state-space models using subspace method with time-domain data (N4SID), other MIMO system identification techniques. The proposed method achieved better results compared to other techniques, showing the importance and versatility of learning based on novelty detection for MIMO problems.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novelty Detection for Iterative Learning of MIMO Fuzzy Systems\",\"authors\":\"J. S. Junior, Jérôme Mendes, R. Araújo, J. Paulo, C. Premebida\",\"doi\":\"10.1109/INDIN45523.2021.9557354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a methodology for iterative learning of multi-input multi-output (MIMO) fuzzy models focusing on dynamic system identification. The first step of the proposed method is the learning of the antecedent part of the fuzzy system, which is learned iteratively, where fuzzy rules can be added or merged based on the presented novelty detection and similarity criteria defined by a recursive extension of the Gath-Geva clustering algorithm. Then, the consequent part consists in the direct implementation of a non-recursive fuzzy approach that uses global least squares, Observer Kalman Filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA). The proposed method is validated using experimental data from a real quadrotor aerial robot, a nonlinear dynamic system. Using quantitative performance metrics, the proposed method is compared with Hammerstein-Wiener models (H.-W.), nonlinear autoregressive models with exogenous input (NARX), and state-space models using subspace method with time-domain data (N4SID), other MIMO system identification techniques. The proposed method achieved better results compared to other techniques, showing the importance and versatility of learning based on novelty detection for MIMO problems.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种多输入多输出(MIMO)模糊模型的迭代学习方法,重点关注动态系统辨识。该方法的第一步是学习模糊系统的先行部分,这是迭代学习,其中模糊规则可以根据提出的新颖性检测和相似度标准添加或合并,这些标准是由Gath-Geva聚类算法的递归扩展定义的。然后,后续部分包括使用全局最小二乘、观测器卡尔曼滤波识别(OKID)和特征系统实现算法(ERA)的非递归模糊方法的直接实现。通过实际四旋翼航空机器人非线性动力系统的实验数据验证了该方法的有效性。利用定量性能指标,将该方法与Hammerstein-Wiener模型(h - w .)、外生输入非线性自回归模型(NARX)、带时域数据的子空间状态空间模型(N4SID)以及其他MIMO系统识别技术进行了比较。与其他技术相比,该方法取得了更好的结果,显示了基于新颖性检测的学习对MIMO问题的重要性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novelty Detection for Iterative Learning of MIMO Fuzzy Systems
This paper proposes a methodology for iterative learning of multi-input multi-output (MIMO) fuzzy models focusing on dynamic system identification. The first step of the proposed method is the learning of the antecedent part of the fuzzy system, which is learned iteratively, where fuzzy rules can be added or merged based on the presented novelty detection and similarity criteria defined by a recursive extension of the Gath-Geva clustering algorithm. Then, the consequent part consists in the direct implementation of a non-recursive fuzzy approach that uses global least squares, Observer Kalman Filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA). The proposed method is validated using experimental data from a real quadrotor aerial robot, a nonlinear dynamic system. Using quantitative performance metrics, the proposed method is compared with Hammerstein-Wiener models (H.-W.), nonlinear autoregressive models with exogenous input (NARX), and state-space models using subspace method with time-domain data (N4SID), other MIMO system identification techniques. The proposed method achieved better results compared to other techniques, showing the importance and versatility of learning based on novelty detection for MIMO problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信