卫星数据驱动的深度学习方法监测韩国地下水干旱

J. Seo, Sang-Il Lee
{"title":"卫星数据驱动的深度学习方法监测韩国地下水干旱","authors":"J. Seo, Sang-Il Lee","doi":"10.1109/IGARSS46834.2022.9884120","DOIUrl":null,"url":null,"abstract":"Due to the effect of climate change on the hydrological cycle process, the severity and frequency of drought have increased. Typically, drought begins with meteorological drought, after which it propagates to agricultural and hydrological drought. Thus, it is essential to investigate the process involved in the drought propagation from meteorological to groundwater drought. In this study, we investigated groundwater drought by calculating the standardized groundwater level index (SGI) using predicted groundwater storage changes (GWSC) based on satellite data-driven deep learning models. The GWSC was predicted using two deep learning models (the convolution neural network-long short term memory (CNN-LSTM) and LSTM), and the results were validated using in situ observation data. In addition, the SGI was compared to meteorological, agricultural, and hydrological drought indices based on remote sensed data, and the drought propagation was analyzed. This study revealed the potential of satellite data-driven deep learning models for assessing groundwater droughts, which is important for the development of multi-scale drought monitoring systems.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Satellite Data-Driven Deep Learning Approach for Monitoring Groundwater Drought in South Korea\",\"authors\":\"J. Seo, Sang-Il Lee\",\"doi\":\"10.1109/IGARSS46834.2022.9884120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the effect of climate change on the hydrological cycle process, the severity and frequency of drought have increased. Typically, drought begins with meteorological drought, after which it propagates to agricultural and hydrological drought. Thus, it is essential to investigate the process involved in the drought propagation from meteorological to groundwater drought. In this study, we investigated groundwater drought by calculating the standardized groundwater level index (SGI) using predicted groundwater storage changes (GWSC) based on satellite data-driven deep learning models. The GWSC was predicted using two deep learning models (the convolution neural network-long short term memory (CNN-LSTM) and LSTM), and the results were validated using in situ observation data. In addition, the SGI was compared to meteorological, agricultural, and hydrological drought indices based on remote sensed data, and the drought propagation was analyzed. This study revealed the potential of satellite data-driven deep learning models for assessing groundwater droughts, which is important for the development of multi-scale drought monitoring systems.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于气候变化对水文循环过程的影响,干旱的严重程度和频率有所增加。通常情况下,干旱始于气象干旱,然后蔓延到农业和水文干旱。因此,有必要研究干旱从气象干旱到地下水干旱的传播过程。在本研究中,我们基于卫星数据驱动的深度学习模型,利用预测地下水储量变化(GWSC)计算标准化地下水水位指数(SGI)来研究地下水干旱。采用卷积神经网络-长短期记忆(CNN-LSTM)和LSTM两种深度学习模型对GWSC进行预测,并利用现场观测数据对预测结果进行验证。并将SGI与气象、农业、水文等遥感干旱指数进行了比较,分析了干旱的传播规律。该研究揭示了卫星数据驱动的地下水干旱评估深度学习模型的潜力,这对开发多尺度干旱监测系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Satellite Data-Driven Deep Learning Approach for Monitoring Groundwater Drought in South Korea
Due to the effect of climate change on the hydrological cycle process, the severity and frequency of drought have increased. Typically, drought begins with meteorological drought, after which it propagates to agricultural and hydrological drought. Thus, it is essential to investigate the process involved in the drought propagation from meteorological to groundwater drought. In this study, we investigated groundwater drought by calculating the standardized groundwater level index (SGI) using predicted groundwater storage changes (GWSC) based on satellite data-driven deep learning models. The GWSC was predicted using two deep learning models (the convolution neural network-long short term memory (CNN-LSTM) and LSTM), and the results were validated using in situ observation data. In addition, the SGI was compared to meteorological, agricultural, and hydrological drought indices based on remote sensed data, and the drought propagation was analyzed. This study revealed the potential of satellite data-driven deep learning models for assessing groundwater droughts, which is important for the development of multi-scale drought monitoring systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信