Pramod Anantharam, Tanvi Banerjee, A. Sheth, K. Thirunarayan, Surendra Marupudi, Vaikunth Sridharan, Shalini G. Forbis
{"title":"儿童哮喘管理的知识驱动个性化情境移动健康服务","authors":"Pramod Anantharam, Tanvi Banerjee, A. Sheth, K. Thirunarayan, Surendra Marupudi, Vaikunth Sridharan, Shalini G. Forbis","doi":"10.1109/MobServ.2015.48","DOIUrl":null,"url":null,"abstract":"Wide adoption of smartphones and availability of low-cost sensors has resulted in seamless and continuous monitoring of physiology, environment, and public health notifications. However, personalized digital health and patient empowerment can become a reality only if the complex multisensory and multimodal data is processed within the patient context. Contextual processing of patient data along with personalized medical knowledge can lead to actionable information for better and timely decisions. We present a system called kHealth capable of aggregating multisensory and multimodal data from sensors (passive sensing) and answers to questionnaire (active sensing) from patients with asthma. We present our preliminary data analysis comprising data collected from real patients highlighting the challenges in deploying such an application. The results show strong promise to derive actionable information using a combination of physiological indicators from active and passive sensors that can help doctors determine more precisely the cause, severity, and control level of asthma. Information synthesized from kHealth can be used to alert patients and caregivers for seeking timely clinical assistance to better manage asthma and improve their quality of life.","PeriodicalId":166267,"journal":{"name":"2015 IEEE International Conference on Mobile Services","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Knowledge-Driven Personalized Contextual mHealth Service for Asthma Management in Children\",\"authors\":\"Pramod Anantharam, Tanvi Banerjee, A. Sheth, K. Thirunarayan, Surendra Marupudi, Vaikunth Sridharan, Shalini G. Forbis\",\"doi\":\"10.1109/MobServ.2015.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide adoption of smartphones and availability of low-cost sensors has resulted in seamless and continuous monitoring of physiology, environment, and public health notifications. However, personalized digital health and patient empowerment can become a reality only if the complex multisensory and multimodal data is processed within the patient context. Contextual processing of patient data along with personalized medical knowledge can lead to actionable information for better and timely decisions. We present a system called kHealth capable of aggregating multisensory and multimodal data from sensors (passive sensing) and answers to questionnaire (active sensing) from patients with asthma. We present our preliminary data analysis comprising data collected from real patients highlighting the challenges in deploying such an application. The results show strong promise to derive actionable information using a combination of physiological indicators from active and passive sensors that can help doctors determine more precisely the cause, severity, and control level of asthma. Information synthesized from kHealth can be used to alert patients and caregivers for seeking timely clinical assistance to better manage asthma and improve their quality of life.\",\"PeriodicalId\":166267,\"journal\":{\"name\":\"2015 IEEE International Conference on Mobile Services\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Mobile Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MobServ.2015.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mobile Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MobServ.2015.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Knowledge-Driven Personalized Contextual mHealth Service for Asthma Management in Children
Wide adoption of smartphones and availability of low-cost sensors has resulted in seamless and continuous monitoring of physiology, environment, and public health notifications. However, personalized digital health and patient empowerment can become a reality only if the complex multisensory and multimodal data is processed within the patient context. Contextual processing of patient data along with personalized medical knowledge can lead to actionable information for better and timely decisions. We present a system called kHealth capable of aggregating multisensory and multimodal data from sensors (passive sensing) and answers to questionnaire (active sensing) from patients with asthma. We present our preliminary data analysis comprising data collected from real patients highlighting the challenges in deploying such an application. The results show strong promise to derive actionable information using a combination of physiological indicators from active and passive sensors that can help doctors determine more precisely the cause, severity, and control level of asthma. Information synthesized from kHealth can be used to alert patients and caregivers for seeking timely clinical assistance to better manage asthma and improve their quality of life.