虚拟现实应用的强化学习内容生成

C. López, O. Ashour, Conrad S. Tucker
{"title":"虚拟现实应用的强化学习内容生成","authors":"C. López, O. Ashour, Conrad S. Tucker","doi":"10.1115/detc2019-97711","DOIUrl":null,"url":null,"abstract":"\n This work presents a Procedural Content Generation (PCG) method based on a Neural Network Reinforcement Learning (RL) approach that generates new environments for Virtual Reality (VR) learning applications. The primary objective of PCG methods is to algorithmically generate new content (e.g., environments, levels) in order to improve user experience. Researchers have started exploring the integration of Machine Learning (ML) algorithms into their PCG methods. These ML approaches help explore the design space and generate new content more efficiently. The capability to provide users with new content has great potential for learning applications. However, these ML algorithms require large datasets to train their generative models. In contrast, RL based methods take advantage of simulation to train their models. Moreover, even though VR has become an emerging technology to engage users, there have been few studies that explore PCG for learning purposes and fewer in the context of VR. Considering these limitations, this work presents a method that generates new VR environments by training an RL agent using a simulation platform. This PCG method has the potential to maintain users’ engagement over time by presenting them with new environments in VR learning applications.","PeriodicalId":352702,"journal":{"name":"Volume 1: 39th Computers and Information in Engineering Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reinforcement Learning Content Generation for Virtual Reality Applications\",\"authors\":\"C. López, O. Ashour, Conrad S. Tucker\",\"doi\":\"10.1115/detc2019-97711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work presents a Procedural Content Generation (PCG) method based on a Neural Network Reinforcement Learning (RL) approach that generates new environments for Virtual Reality (VR) learning applications. The primary objective of PCG methods is to algorithmically generate new content (e.g., environments, levels) in order to improve user experience. Researchers have started exploring the integration of Machine Learning (ML) algorithms into their PCG methods. These ML approaches help explore the design space and generate new content more efficiently. The capability to provide users with new content has great potential for learning applications. However, these ML algorithms require large datasets to train their generative models. In contrast, RL based methods take advantage of simulation to train their models. Moreover, even though VR has become an emerging technology to engage users, there have been few studies that explore PCG for learning purposes and fewer in the context of VR. Considering these limitations, this work presents a method that generates new VR environments by training an RL agent using a simulation platform. This PCG method has the potential to maintain users’ engagement over time by presenting them with new environments in VR learning applications.\",\"PeriodicalId\":352702,\"journal\":{\"name\":\"Volume 1: 39th Computers and Information in Engineering Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: 39th Computers and Information in Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 39th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

这项工作提出了一种基于神经网络强化学习(RL)方法的程序内容生成(PCG)方法,该方法为虚拟现实(VR)学习应用生成新的环境。PCG方法的主要目标是通过算法生成新内容(例如,环境,关卡),以改善用户体验。研究人员已经开始探索将机器学习(ML)算法集成到PCG方法中。这些机器学习方法有助于探索设计空间并更有效地生成新内容。为用户提供新内容的能力对于学习应用程序具有巨大的潜力。然而,这些机器学习算法需要大型数据集来训练它们的生成模型。相比之下,基于强化学习的方法利用仿真来训练他们的模型。此外,尽管VR已经成为一种吸引用户的新兴技术,但很少有研究将PCG用于学习目的,而在VR背景下的研究则更少。考虑到这些限制,这项工作提出了一种方法,通过使用仿真平台训练RL代理来生成新的VR环境。这种PCG方法有可能通过向用户呈现VR学习应用中的新环境来保持用户的参与度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning Content Generation for Virtual Reality Applications
This work presents a Procedural Content Generation (PCG) method based on a Neural Network Reinforcement Learning (RL) approach that generates new environments for Virtual Reality (VR) learning applications. The primary objective of PCG methods is to algorithmically generate new content (e.g., environments, levels) in order to improve user experience. Researchers have started exploring the integration of Machine Learning (ML) algorithms into their PCG methods. These ML approaches help explore the design space and generate new content more efficiently. The capability to provide users with new content has great potential for learning applications. However, these ML algorithms require large datasets to train their generative models. In contrast, RL based methods take advantage of simulation to train their models. Moreover, even though VR has become an emerging technology to engage users, there have been few studies that explore PCG for learning purposes and fewer in the context of VR. Considering these limitations, this work presents a method that generates new VR environments by training an RL agent using a simulation platform. This PCG method has the potential to maintain users’ engagement over time by presenting them with new environments in VR learning applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信