石油收益可预测性的错觉:数据的选择很重要!

T. Conlon, J. Cotter, Emmanuel Eyiah-Donkor
{"title":"石油收益可预测性的错觉:数据的选择很重要!","authors":"T. Conlon, J. Cotter, Emmanuel Eyiah-Donkor","doi":"10.2139/ssrn.3841507","DOIUrl":null,"url":null,"abstract":"Previous studies document statistically significant evidence of crude oil return predictability by several forecasting variables. We suggest that this evidence is misleading and follows from the common use of within-month averages of daily oil prices in calculating returns used in predictive regressions. Averaging introduces a bias in the estimates of the first-order autocorrelation coefficient and variance of returns. Consequently, estimates of regression coefficients are inefficient and associated t-statistics are overstated, leading to false inference about the true extent of return predictability. On the contrary, using end-of-month data, we do not find convincing evidence for the predictability of oil returns. Our results highlight and provide a cautionary tale on how the choice of data could influence hypothesis testing for return predictability.","PeriodicalId":154391,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Illusion of Oil Return Predictability: The Choice of Data Matters!\",\"authors\":\"T. Conlon, J. Cotter, Emmanuel Eyiah-Donkor\",\"doi\":\"10.2139/ssrn.3841507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies document statistically significant evidence of crude oil return predictability by several forecasting variables. We suggest that this evidence is misleading and follows from the common use of within-month averages of daily oil prices in calculating returns used in predictive regressions. Averaging introduces a bias in the estimates of the first-order autocorrelation coefficient and variance of returns. Consequently, estimates of regression coefficients are inefficient and associated t-statistics are overstated, leading to false inference about the true extent of return predictability. On the contrary, using end-of-month data, we do not find convincing evidence for the predictability of oil returns. Our results highlight and provide a cautionary tale on how the choice of data could influence hypothesis testing for return predictability.\",\"PeriodicalId\":154391,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3841507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets Regulation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3841507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

先前的研究通过几个预测变量证明了原油收益的可预测性。我们认为,这一证据具有误导性,并且在预测回归中使用每日油价的月内平均值来计算回报。平均在一阶自相关系数和收益方差的估计中引入了偏差。因此,回归系数的估计效率低下,相关的t统计量被夸大,导致对回报可预测性的真实程度的错误推断。相反,使用月末数据,我们没有找到令人信服的证据来证明石油收益的可预测性。我们的结果强调并提供了一个关于数据选择如何影响回报可预测性假设检验的警示故事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Illusion of Oil Return Predictability: The Choice of Data Matters!
Previous studies document statistically significant evidence of crude oil return predictability by several forecasting variables. We suggest that this evidence is misleading and follows from the common use of within-month averages of daily oil prices in calculating returns used in predictive regressions. Averaging introduces a bias in the estimates of the first-order autocorrelation coefficient and variance of returns. Consequently, estimates of regression coefficients are inefficient and associated t-statistics are overstated, leading to false inference about the true extent of return predictability. On the contrary, using end-of-month data, we do not find convincing evidence for the predictability of oil returns. Our results highlight and provide a cautionary tale on how the choice of data could influence hypothesis testing for return predictability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信