不完整数据的基于规则的分类器集合

Cao Truong Tran, Mengjie Zhang, Peter M. Andreae, Bing Xue, L. Bui
{"title":"不完整数据的基于规则的分类器集合","authors":"Cao Truong Tran, Mengjie Zhang, Peter M. Andreae, Bing Xue, L. Bui","doi":"10.1109/IESYS.2017.8233553","DOIUrl":null,"url":null,"abstract":"Many real-world datasets suffer from the problem of missing values. Imputation which replaces missing values with plausible values is a major method for classification with data containing missing values. However, powerful imputation methods including multiple imputation are usually computationally intensive for estimating missing values in unseen incomplete instances. Rule-based classification algorithms have been widely used in data mining, but the majority of them are not able to directly work with data containing missing values. This paper proposes an approach to effectively combining multiple imputation, feature selection and rule-based classification to construct a set of classifiers, which can be used to classify any incomplete instance without requiring imputation. Empirical results show that the method not only can be more accurate than other common methods, but can also be faster to classify new instances than the other methods.","PeriodicalId":429982,"journal":{"name":"2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An ensemble of rule-based classifiers for incomplete data\",\"authors\":\"Cao Truong Tran, Mengjie Zhang, Peter M. Andreae, Bing Xue, L. Bui\",\"doi\":\"10.1109/IESYS.2017.8233553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real-world datasets suffer from the problem of missing values. Imputation which replaces missing values with plausible values is a major method for classification with data containing missing values. However, powerful imputation methods including multiple imputation are usually computationally intensive for estimating missing values in unseen incomplete instances. Rule-based classification algorithms have been widely used in data mining, but the majority of them are not able to directly work with data containing missing values. This paper proposes an approach to effectively combining multiple imputation, feature selection and rule-based classification to construct a set of classifiers, which can be used to classify any incomplete instance without requiring imputation. Empirical results show that the method not only can be more accurate than other common methods, but can also be faster to classify new instances than the other methods.\",\"PeriodicalId\":429982,\"journal\":{\"name\":\"2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IESYS.2017.8233553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESYS.2017.8233553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

许多真实世界的数据集都有缺失值的问题。用似是而非的值代替缺失值的插值方法是对缺失数据进行分类的主要方法。然而,包括多重插值在内的强大的插值方法通常需要大量的计算来估计未见过的不完整实例中的缺失值。基于规则的分类算法在数据挖掘中得到了广泛的应用,但大多数算法不能直接处理包含缺失值的数据。本文提出了一种将多重输入、特征选择和基于规则的分类有效地结合起来,构建一组分类器的方法,该方法可以在不需要输入的情况下对任何不完整的实例进行分类。实验结果表明,该方法不仅比其他常用方法更准确,而且对新实例的分类速度也比其他方法快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble of rule-based classifiers for incomplete data
Many real-world datasets suffer from the problem of missing values. Imputation which replaces missing values with plausible values is a major method for classification with data containing missing values. However, powerful imputation methods including multiple imputation are usually computationally intensive for estimating missing values in unseen incomplete instances. Rule-based classification algorithms have been widely used in data mining, but the majority of them are not able to directly work with data containing missing values. This paper proposes an approach to effectively combining multiple imputation, feature selection and rule-based classification to construct a set of classifiers, which can be used to classify any incomplete instance without requiring imputation. Empirical results show that the method not only can be more accurate than other common methods, but can also be faster to classify new instances than the other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信