基于对手惩罚EM的t型混合动力车自动选择

Chunyan Zhang, Jin Tang, B. Luo
{"title":"基于对手惩罚EM的t型混合动力车自动选择","authors":"Chunyan Zhang, Jin Tang, B. Luo","doi":"10.1109/HIS.2006.14","DOIUrl":null,"url":null,"abstract":"Modelling mixtures of multivariate t-distributions are usually used instead of Gaussian mixture models(GMM) as a robust approach, when one fits a set of continuous multivariate data which have wider tail than Gaussian¿s or atypical observations, but it is unable to perform model selection automatically through the traditional EM (Expectation Maximization) algorithm. To solve this problem, a new algorithm, which is called Rival Penalized Expectation-Maximization (RPEM) algorithm, is proposed to t-mixture model (TMM). It can automatically select an appropriate number of densities in t-density mixture model. Experimental results on unsupervised color image segmentation demonstrate the affectivity of the proposed algorithm.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic T-Mixture Model Selection via Rival Penalized EM\",\"authors\":\"Chunyan Zhang, Jin Tang, B. Luo\",\"doi\":\"10.1109/HIS.2006.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling mixtures of multivariate t-distributions are usually used instead of Gaussian mixture models(GMM) as a robust approach, when one fits a set of continuous multivariate data which have wider tail than Gaussian¿s or atypical observations, but it is unable to perform model selection automatically through the traditional EM (Expectation Maximization) algorithm. To solve this problem, a new algorithm, which is called Rival Penalized Expectation-Maximization (RPEM) algorithm, is proposed to t-mixture model (TMM). It can automatically select an appropriate number of densities in t-density mixture model. Experimental results on unsupervised color image segmentation demonstrate the affectivity of the proposed algorithm.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当拟合一组比高斯分布或非典型观测值尾部更宽的连续多变量数据时,通常使用多元t分布混合模型代替高斯混合模型(GMM)作为鲁棒性方法,但它无法通过传统的EM(期望最大化)算法自动进行模型选择。为了解决这一问题,提出了一种新的t-mix模型(TMM)算法——对手惩罚期望最大化(RPEM)算法。它可以在t-密度混合模型中自动选择合适的密度数。对无监督彩色图像分割的实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic T-Mixture Model Selection via Rival Penalized EM
Modelling mixtures of multivariate t-distributions are usually used instead of Gaussian mixture models(GMM) as a robust approach, when one fits a set of continuous multivariate data which have wider tail than Gaussian¿s or atypical observations, but it is unable to perform model selection automatically through the traditional EM (Expectation Maximization) algorithm. To solve this problem, a new algorithm, which is called Rival Penalized Expectation-Maximization (RPEM) algorithm, is proposed to t-mixture model (TMM). It can automatically select an appropriate number of densities in t-density mixture model. Experimental results on unsupervised color image segmentation demonstrate the affectivity of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信