利用相反信息减少进化校准器的工作量

Nicolás Rojas-Morales, M. Riff
{"title":"利用相反信息减少进化校准器的工作量","authors":"Nicolás Rojas-Morales, M. Riff","doi":"10.1109/LA-CCI48322.2021.9769793","DOIUrl":null,"url":null,"abstract":"Metaheuristics have been successfully applied to solve complex real-world problems in many application domains. Their performance strongly depends on the values of their parameters. Many tuning algorithms have already been proposed to find a set of suitable values. However, the amount of computational time required to obtain these values is usually high. Our goal is to propose a collaborative strategy to help to reduce the configuration effort during the tuning process. Here, we introduce a novel initialization strategy that learns from poor quality configurations in a pre-processing phase. We evaluate our collaboration using the well-known Evolutionary Calibrator (Evoca). Moreover, we tune two different algorithms: the Ant Knapsack algorithm, using hard instances of the Multidimensional Knapsack Problem, and a Genetic Algorithm for solving landscapes that follow the NK model (N components and degree K). Evoca obtains promising results using our novel strategy, consuming less computational resources.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reducing the effort of Evolutionary Calibrator Using Opposite Information\",\"authors\":\"Nicolás Rojas-Morales, M. Riff\",\"doi\":\"10.1109/LA-CCI48322.2021.9769793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaheuristics have been successfully applied to solve complex real-world problems in many application domains. Their performance strongly depends on the values of their parameters. Many tuning algorithms have already been proposed to find a set of suitable values. However, the amount of computational time required to obtain these values is usually high. Our goal is to propose a collaborative strategy to help to reduce the configuration effort during the tuning process. Here, we introduce a novel initialization strategy that learns from poor quality configurations in a pre-processing phase. We evaluate our collaboration using the well-known Evolutionary Calibrator (Evoca). Moreover, we tune two different algorithms: the Ant Knapsack algorithm, using hard instances of the Multidimensional Knapsack Problem, and a Genetic Algorithm for solving landscapes that follow the NK model (N components and degree K). Evoca obtains promising results using our novel strategy, consuming less computational resources.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

元启发式已经成功地应用于许多应用领域中解决复杂的现实问题。它们的性能很大程度上取决于参数的值。为了找到一组合适的值,已经提出了许多调优算法。然而,获得这些值所需的计算时间通常很高。我们的目标是提出一种协作策略,以帮助减少调优过程中的配置工作。在这里,我们引入了一种新的初始化策略,该策略从预处理阶段的低质量配置中学习。我们使用著名的进化校准器(Evoca)来评估我们的合作。此外,我们调整了两种不同的算法:蚂蚁背包算法,使用多维背包问题的硬实例,以及遗传算法,用于解决遵循NK模型(N个分量和K度)的景观。Evoca使用我们的新策略获得了有希望的结果,消耗了更少的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing the effort of Evolutionary Calibrator Using Opposite Information
Metaheuristics have been successfully applied to solve complex real-world problems in many application domains. Their performance strongly depends on the values of their parameters. Many tuning algorithms have already been proposed to find a set of suitable values. However, the amount of computational time required to obtain these values is usually high. Our goal is to propose a collaborative strategy to help to reduce the configuration effort during the tuning process. Here, we introduce a novel initialization strategy that learns from poor quality configurations in a pre-processing phase. We evaluate our collaboration using the well-known Evolutionary Calibrator (Evoca). Moreover, we tune two different algorithms: the Ant Knapsack algorithm, using hard instances of the Multidimensional Knapsack Problem, and a Genetic Algorithm for solving landscapes that follow the NK model (N components and degree K). Evoca obtains promising results using our novel strategy, consuming less computational resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信