语音识别中盲源分离的非负矩阵分解算法

Kumar S Santosh, S. Bharathi
{"title":"语音识别中盲源分离的非负矩阵分解算法","authors":"Kumar S Santosh, S. Bharathi","doi":"10.1109/RTEICT.2017.8256999","DOIUrl":null,"url":null,"abstract":"The performance of the Speech recognition degrades in the presence of the multiple sources/speakers or unwanted signals such as noise. To separate the source from the other signals called as Blind Source Separation many algorithms are proposed in the literature such as Independent Component Analysis (ICA), Principle Component Analysis (PCA), Non-Negative matrix Factorization (NMF). In this paper we provide the theoretical study of the different algorithms for NMF factorization such as Least Square Error (LSE) divergence, Kullback-Leibler (KL) divergence, Itakura-saito (IS) divergence, Non-negative hidden Markov model(N-HMM), Bayesian NMF, NMF with Automatic Relevance Determinant and Complex NMF applicable for the 2-dimensional data matrix. The performance evaluation of the supervised learning and un-supervised learning is evaluated.","PeriodicalId":342831,"journal":{"name":"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Non-negative matrix factorization algorithms for blind source sepertion in speech recognition\",\"authors\":\"Kumar S Santosh, S. Bharathi\",\"doi\":\"10.1109/RTEICT.2017.8256999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the Speech recognition degrades in the presence of the multiple sources/speakers or unwanted signals such as noise. To separate the source from the other signals called as Blind Source Separation many algorithms are proposed in the literature such as Independent Component Analysis (ICA), Principle Component Analysis (PCA), Non-Negative matrix Factorization (NMF). In this paper we provide the theoretical study of the different algorithms for NMF factorization such as Least Square Error (LSE) divergence, Kullback-Leibler (KL) divergence, Itakura-saito (IS) divergence, Non-negative hidden Markov model(N-HMM), Bayesian NMF, NMF with Automatic Relevance Determinant and Complex NMF applicable for the 2-dimensional data matrix. The performance evaluation of the supervised learning and un-supervised learning is evaluated.\",\"PeriodicalId\":342831,\"journal\":{\"name\":\"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2017.8256999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2017.8256999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

语音识别的性能在多个声源/扬声器或不需要的信号(如噪声)的存在下会下降。文献中提出了独立分量分析(ICA)、主成分分析(PCA)、非负矩阵分解(NMF)等算法来分离信号源和其他信号,称为盲源分离。本文从理论上研究了适用于二维数据矩阵的最小二乘误差(LSE)散度、Kullback-Leibler (KL)散度、Itakura-saito (IS)散度、非负隐马尔可夫模型(N-HMM)、贝叶斯NMF、自动相关行列式NMF和复NMF等NMF分解算法。对监督学习和非监督学习的性能评价进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-negative matrix factorization algorithms for blind source sepertion in speech recognition
The performance of the Speech recognition degrades in the presence of the multiple sources/speakers or unwanted signals such as noise. To separate the source from the other signals called as Blind Source Separation many algorithms are proposed in the literature such as Independent Component Analysis (ICA), Principle Component Analysis (PCA), Non-Negative matrix Factorization (NMF). In this paper we provide the theoretical study of the different algorithms for NMF factorization such as Least Square Error (LSE) divergence, Kullback-Leibler (KL) divergence, Itakura-saito (IS) divergence, Non-negative hidden Markov model(N-HMM), Bayesian NMF, NMF with Automatic Relevance Determinant and Complex NMF applicable for the 2-dimensional data matrix. The performance evaluation of the supervised learning and un-supervised learning is evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信