文档分析和分类:机器人过程自动化(RPA)和机器学习方法

A. Baidya
{"title":"文档分析和分类:机器人过程自动化(RPA)和机器学习方法","authors":"A. Baidya","doi":"10.1109/ICICT52872.2021.00013","DOIUrl":null,"url":null,"abstract":"Robotic Process Automation (RPA) uses software robots to emulate human tasks within an organization to execute a business process. Because of these benefits RPA is frequently and regularly used to perform repeated tasks, tasks that have a greater influence on the organization. In this paper I have proposed solutions to overcome the challenges associated with unstructured data, using machine learning models for processing formal documents and by incorporating deep learning algorithms as an analytical approach.","PeriodicalId":359456,"journal":{"name":"2021 4th International Conference on Information and Computer Technologies (ICICT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Document Analysis and Classification: A Robotic Process Automation (RPA) and Machine Learning Approach\",\"authors\":\"A. Baidya\",\"doi\":\"10.1109/ICICT52872.2021.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic Process Automation (RPA) uses software robots to emulate human tasks within an organization to execute a business process. Because of these benefits RPA is frequently and regularly used to perform repeated tasks, tasks that have a greater influence on the organization. In this paper I have proposed solutions to overcome the challenges associated with unstructured data, using machine learning models for processing formal documents and by incorporating deep learning algorithms as an analytical approach.\",\"PeriodicalId\":359456,\"journal\":{\"name\":\"2021 4th International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT52872.2021.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT52872.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器人流程自动化(Robotic Process Automation, RPA)使用软件机器人来模拟组织内的人工任务,以执行业务流程。由于这些好处,RPA经常被用于执行重复的任务,这些任务对组织有更大的影响。在本文中,我提出了克服与非结构化数据相关的挑战的解决方案,使用机器学习模型处理正式文档,并将深度学习算法作为分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Document Analysis and Classification: A Robotic Process Automation (RPA) and Machine Learning Approach
Robotic Process Automation (RPA) uses software robots to emulate human tasks within an organization to execute a business process. Because of these benefits RPA is frequently and regularly used to perform repeated tasks, tasks that have a greater influence on the organization. In this paper I have proposed solutions to overcome the challenges associated with unstructured data, using machine learning models for processing formal documents and by incorporating deep learning algorithms as an analytical approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信