{"title":"m的效果。阔叶叶提取物对高果糖玉米糖浆(HFCS)诱导的非酒精性脂肪肝大鼠模型的影响","authors":"Subha Mary Varghese, Jibu P. Thomas","doi":"10.5772/INTECHOPEN.82200","DOIUrl":null,"url":null,"abstract":"Non-alcoholic fatty liver disease (NAFLD) is a condition where the content of intrahepatic triglycerides (steatosis) rises, inclusive or exclusive of inflammation and fibrosis (namely steatohepatitis). It is acknowledged all over the world as the leading cause of chronic liver disease (CLD). Mulberry, a phytonutrient-rich plant belongs to the genus Morus , has been widely used as one of the conventional medicinal plants due to its chemical composition and pharmacological utility. Identification of leaf extract ( M. latifolia ) revealed chlorogenic acid, rutin, quercetin, caffeic acid and coumaric acid as functional bioactive principles. Objective of the current study was to evaluate the beneficial effect of M. latifolia in treating HFCS-induced metabolic disorders, namely, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), in rat models. Study determined body weight, blood glucose, lipid profile, liver marker enzymes and histopathology of liver tissues. Study concluded that administration of M. latifolia leaf extract showed a significant decrease in body weight and the levels of lipid profile, blood glucose and liver marker enzymes in HFCS-induced rats compared to HFCS control rats. Histopathological studies confirmed the antihyperlipidaemic properties of M. latifolia leaf extract in reducing the hepatic fat accumulation causing regeneration of liver tissues in HFCS-fed rats.","PeriodicalId":162663,"journal":{"name":"Nonalcoholic Fatty Liver Disease - An Update","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Effect ofM. latifoliaLeaf Extract on High-Fructose Corn Syrup (HFCS)-Induced Non-alcoholic Fatty Liver Disease in Rat Models\",\"authors\":\"Subha Mary Varghese, Jibu P. Thomas\",\"doi\":\"10.5772/INTECHOPEN.82200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-alcoholic fatty liver disease (NAFLD) is a condition where the content of intrahepatic triglycerides (steatosis) rises, inclusive or exclusive of inflammation and fibrosis (namely steatohepatitis). It is acknowledged all over the world as the leading cause of chronic liver disease (CLD). Mulberry, a phytonutrient-rich plant belongs to the genus Morus , has been widely used as one of the conventional medicinal plants due to its chemical composition and pharmacological utility. Identification of leaf extract ( M. latifolia ) revealed chlorogenic acid, rutin, quercetin, caffeic acid and coumaric acid as functional bioactive principles. Objective of the current study was to evaluate the beneficial effect of M. latifolia in treating HFCS-induced metabolic disorders, namely, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), in rat models. Study determined body weight, blood glucose, lipid profile, liver marker enzymes and histopathology of liver tissues. Study concluded that administration of M. latifolia leaf extract showed a significant decrease in body weight and the levels of lipid profile, blood glucose and liver marker enzymes in HFCS-induced rats compared to HFCS control rats. Histopathological studies confirmed the antihyperlipidaemic properties of M. latifolia leaf extract in reducing the hepatic fat accumulation causing regeneration of liver tissues in HFCS-fed rats.\",\"PeriodicalId\":162663,\"journal\":{\"name\":\"Nonalcoholic Fatty Liver Disease - An Update\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonalcoholic Fatty Liver Disease - An Update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonalcoholic Fatty Liver Disease - An Update","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect ofM. latifoliaLeaf Extract on High-Fructose Corn Syrup (HFCS)-Induced Non-alcoholic Fatty Liver Disease in Rat Models
Non-alcoholic fatty liver disease (NAFLD) is a condition where the content of intrahepatic triglycerides (steatosis) rises, inclusive or exclusive of inflammation and fibrosis (namely steatohepatitis). It is acknowledged all over the world as the leading cause of chronic liver disease (CLD). Mulberry, a phytonutrient-rich plant belongs to the genus Morus , has been widely used as one of the conventional medicinal plants due to its chemical composition and pharmacological utility. Identification of leaf extract ( M. latifolia ) revealed chlorogenic acid, rutin, quercetin, caffeic acid and coumaric acid as functional bioactive principles. Objective of the current study was to evaluate the beneficial effect of M. latifolia in treating HFCS-induced metabolic disorders, namely, dyslipidaemia and non-alcoholic fatty liver disease (NAFLD), in rat models. Study determined body weight, blood glucose, lipid profile, liver marker enzymes and histopathology of liver tissues. Study concluded that administration of M. latifolia leaf extract showed a significant decrease in body weight and the levels of lipid profile, blood glucose and liver marker enzymes in HFCS-induced rats compared to HFCS control rats. Histopathological studies confirmed the antihyperlipidaemic properties of M. latifolia leaf extract in reducing the hepatic fat accumulation causing regeneration of liver tissues in HFCS-fed rats.