基于GIS和扩散理论的电动汽车充电空间负荷预测

F. Heymann, Carlos Pereira, Vladimiro Miranda, F. Soares
{"title":"基于GIS和扩散理论的电动汽车充电空间负荷预测","authors":"F. Heymann, Carlos Pereira, Vladimiro Miranda, F. Soares","doi":"10.1109/ISGTEurope.2017.8260172","DOIUrl":null,"url":null,"abstract":"The uptake of electric vehicles (EV) will require important modifications in traditional grid planning and load forecasting techniques. Existing literature suggests that the integration of EVs will be more adversarial to elements of the existing electricity infrastructure in terms of power supply (kW) than energy (kWh) delivery. While several studies analyzed the grid impact of electric vehicle fleets, few consider the adoption process itself which may lead to strong spatial variations of the utilization of charging infrastructure. The presented approach extends spatial load forecasting, introducing diffusion theory elements to analyze spatio-temporal clustering of EV charging demand. Using open-access census and grid data, this work develops a deterministic framework to forecast spatial patterns of EV charging applied to a real-world environment. Outcomes suggest substantial spatial clustering of EV adoption patterns, showing substation overrating for EV penetration rates of 25% and above with 7.4kW charging power.","PeriodicalId":345050,"journal":{"name":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"78 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Spatial load forecasting of electric vehicle charging using GIS and diffusion theory\",\"authors\":\"F. Heymann, Carlos Pereira, Vladimiro Miranda, F. Soares\",\"doi\":\"10.1109/ISGTEurope.2017.8260172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uptake of electric vehicles (EV) will require important modifications in traditional grid planning and load forecasting techniques. Existing literature suggests that the integration of EVs will be more adversarial to elements of the existing electricity infrastructure in terms of power supply (kW) than energy (kWh) delivery. While several studies analyzed the grid impact of electric vehicle fleets, few consider the adoption process itself which may lead to strong spatial variations of the utilization of charging infrastructure. The presented approach extends spatial load forecasting, introducing diffusion theory elements to analyze spatio-temporal clustering of EV charging demand. Using open-access census and grid data, this work develops a deterministic framework to forecast spatial patterns of EV charging applied to a real-world environment. Outcomes suggest substantial spatial clustering of EV adoption patterns, showing substation overrating for EV penetration rates of 25% and above with 7.4kW charging power.\",\"PeriodicalId\":345050,\"journal\":{\"name\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"78 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2017.8260172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2017.8260172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

电动汽车的普及需要对传统的电网规划和负荷预测技术进行重大修改。现有文献表明,就电力供应(千瓦)而言,电动汽车的整合将对现有电力基础设施的要素产生更大的不利影响,而不是能源(千瓦时)交付。虽然有一些研究分析了电动汽车车队对电网的影响,但很少考虑采用过程本身,这可能导致充电基础设施利用的强烈空间差异。该方法扩展了空间负荷预测,引入扩散理论元素分析电动汽车充电需求的时空聚类。利用开放获取的人口普查和网格数据,本研究开发了一个确定性框架来预测应用于现实环境的电动汽车充电的空间模式。结果表明,电动汽车采用模式存在明显的空间聚类,在充电功率为7.4kW的情况下,变电站对电动汽车渗透率的高估达到25%及以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial load forecasting of electric vehicle charging using GIS and diffusion theory
The uptake of electric vehicles (EV) will require important modifications in traditional grid planning and load forecasting techniques. Existing literature suggests that the integration of EVs will be more adversarial to elements of the existing electricity infrastructure in terms of power supply (kW) than energy (kWh) delivery. While several studies analyzed the grid impact of electric vehicle fleets, few consider the adoption process itself which may lead to strong spatial variations of the utilization of charging infrastructure. The presented approach extends spatial load forecasting, introducing diffusion theory elements to analyze spatio-temporal clustering of EV charging demand. Using open-access census and grid data, this work develops a deterministic framework to forecast spatial patterns of EV charging applied to a real-world environment. Outcomes suggest substantial spatial clustering of EV adoption patterns, showing substation overrating for EV penetration rates of 25% and above with 7.4kW charging power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信