Yixiong Feng, Yong Wang, Bingtao Hu, Zhaoxi Hong, Jianrong Tan
{"title":"核电厂预测性维护的协同边缘计算框架","authors":"Yixiong Feng, Yong Wang, Bingtao Hu, Zhaoxi Hong, Jianrong Tan","doi":"10.1115/icone29-93370","DOIUrl":null,"url":null,"abstract":"\n Nuclear power is an indispensable part of modern energy systems. To operate the nuclear power plants safely and reliably, it is crucial to greatly develop the predictive maintenance of nuclear infrastructure with the support of various smart sensors and big data analytics. To this end, this paper proposes a novel collaborative edge computing-enabled solution for predictive maintenance in nuclear power plants, from which a key problem of efficiently allocating some edge computing tasks is formulated. Specifically, considering huge amounts of industrial data are continuously generated during plant operations, we first present a three-layer predictive maintenance computing framework for nuclear power plants. Subsequently, to timely process these data in some distributed and heterogeneous industrial computing nodes, a complicated scheduling optimization model with some interdependent computational tasks is established. To lower the size of model, we also introduce some reduction strategies. Finally, an actual predictive maintenance scenario in nuclear power plant is chosen and some algorithms are taken for comparisons.","PeriodicalId":422334,"journal":{"name":"Volume 12: Innovative and Smart Nuclear Power Plant Design","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Collaborative Edge Computing Framework for Predictive Maintenance in Nuclear Power Plants\",\"authors\":\"Yixiong Feng, Yong Wang, Bingtao Hu, Zhaoxi Hong, Jianrong Tan\",\"doi\":\"10.1115/icone29-93370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nuclear power is an indispensable part of modern energy systems. To operate the nuclear power plants safely and reliably, it is crucial to greatly develop the predictive maintenance of nuclear infrastructure with the support of various smart sensors and big data analytics. To this end, this paper proposes a novel collaborative edge computing-enabled solution for predictive maintenance in nuclear power plants, from which a key problem of efficiently allocating some edge computing tasks is formulated. Specifically, considering huge amounts of industrial data are continuously generated during plant operations, we first present a three-layer predictive maintenance computing framework for nuclear power plants. Subsequently, to timely process these data in some distributed and heterogeneous industrial computing nodes, a complicated scheduling optimization model with some interdependent computational tasks is established. To lower the size of model, we also introduce some reduction strategies. Finally, an actual predictive maintenance scenario in nuclear power plant is chosen and some algorithms are taken for comparisons.\",\"PeriodicalId\":422334,\"journal\":{\"name\":\"Volume 12: Innovative and Smart Nuclear Power Plant Design\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 12: Innovative and Smart Nuclear Power Plant Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-93370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Innovative and Smart Nuclear Power Plant Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-93370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Collaborative Edge Computing Framework for Predictive Maintenance in Nuclear Power Plants
Nuclear power is an indispensable part of modern energy systems. To operate the nuclear power plants safely and reliably, it is crucial to greatly develop the predictive maintenance of nuclear infrastructure with the support of various smart sensors and big data analytics. To this end, this paper proposes a novel collaborative edge computing-enabled solution for predictive maintenance in nuclear power plants, from which a key problem of efficiently allocating some edge computing tasks is formulated. Specifically, considering huge amounts of industrial data are continuously generated during plant operations, we first present a three-layer predictive maintenance computing framework for nuclear power plants. Subsequently, to timely process these data in some distributed and heterogeneous industrial computing nodes, a complicated scheduling optimization model with some interdependent computational tasks is established. To lower the size of model, we also introduce some reduction strategies. Finally, an actual predictive maintenance scenario in nuclear power plant is chosen and some algorithms are taken for comparisons.