多核系统设计空间探索与优化的机器学习

R. Kim, J. Doppa, P. Pande
{"title":"多核系统设计空间探索与优化的机器学习","authors":"R. Kim, J. Doppa, P. Pande","doi":"10.1145/3240765.3243483","DOIUrl":null,"url":null,"abstract":"In the emerging data-driven science paradigm, computing syStems ranging from IoT and mobile to manycores and datacenters play distinct roles. These systems need to be optimized for the objectives and constraints dictated by the needs of the application. In this paper, we describe how machine learning techniques can be leveraged to improve the computational-efficiency of hardware design optimization. This includes generic methodologies that are applicable for any hardware design space. As an example, we discuss a guided design space exploration framework to accelerate application-specific manycore systems design and advanced imitation learning techniques to improve on-chip resource management. We present some experimental results for application-specific manycore system design optimization and dynamic power management to demonstrate the efficacy of these methods over traditional EDA approaches.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Machine Learning for Design Space Exploration and Optimization of Manycore Systems\",\"authors\":\"R. Kim, J. Doppa, P. Pande\",\"doi\":\"10.1145/3240765.3243483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the emerging data-driven science paradigm, computing syStems ranging from IoT and mobile to manycores and datacenters play distinct roles. These systems need to be optimized for the objectives and constraints dictated by the needs of the application. In this paper, we describe how machine learning techniques can be leveraged to improve the computational-efficiency of hardware design optimization. This includes generic methodologies that are applicable for any hardware design space. As an example, we discuss a guided design space exploration framework to accelerate application-specific manycore systems design and advanced imitation learning techniques to improve on-chip resource management. We present some experimental results for application-specific manycore system design optimization and dynamic power management to demonstrate the efficacy of these methods over traditional EDA approaches.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3243483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3243483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在新兴的数据驱动科学范式中,从物联网和移动到多核和数据中心的计算系统扮演着不同的角色。这些系统需要针对应用程序需求所规定的目标和约束进行优化。在本文中,我们描述了如何利用机器学习技术来提高硬件设计优化的计算效率。这包括适用于任何硬件设计空间的通用方法。作为一个例子,我们讨论了一个引导设计空间探索框架,以加速特定应用的多核系统设计和先进的模仿学习技术,以改善片上资源管理。我们提出了一些针对特定应用的多核系统设计优化和动态电源管理的实验结果,以证明这些方法比传统的EDA方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for Design Space Exploration and Optimization of Manycore Systems
In the emerging data-driven science paradigm, computing syStems ranging from IoT and mobile to manycores and datacenters play distinct roles. These systems need to be optimized for the objectives and constraints dictated by the needs of the application. In this paper, we describe how machine learning techniques can be leveraged to improve the computational-efficiency of hardware design optimization. This includes generic methodologies that are applicable for any hardware design space. As an example, we discuss a guided design space exploration framework to accelerate application-specific manycore systems design and advanced imitation learning techniques to improve on-chip resource management. We present some experimental results for application-specific manycore system design optimization and dynamic power management to demonstrate the efficacy of these methods over traditional EDA approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信